Metamath Proof Explorer


Theorem isrhmd

Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses isrhmd.b B = Base R
isrhmd.o 1 ˙ = 1 R
isrhmd.n N = 1 S
isrhmd.t · ˙ = R
isrhmd.u × ˙ = S
isrhmd.r φ R Ring
isrhmd.s φ S Ring
isrhmd.ho φ F 1 ˙ = N
isrhmd.ht φ x B y B F x · ˙ y = F x × ˙ F y
isrhmd.c C = Base S
isrhmd.p + ˙ = + R
isrhmd.q ˙ = + S
isrhmd.f φ F : B C
isrhmd.hp φ x B y B F x + ˙ y = F x ˙ F y
Assertion isrhmd φ F R RingHom S

Proof

Step Hyp Ref Expression
1 isrhmd.b B = Base R
2 isrhmd.o 1 ˙ = 1 R
3 isrhmd.n N = 1 S
4 isrhmd.t · ˙ = R
5 isrhmd.u × ˙ = S
6 isrhmd.r φ R Ring
7 isrhmd.s φ S Ring
8 isrhmd.ho φ F 1 ˙ = N
9 isrhmd.ht φ x B y B F x · ˙ y = F x × ˙ F y
10 isrhmd.c C = Base S
11 isrhmd.p + ˙ = + R
12 isrhmd.q ˙ = + S
13 isrhmd.f φ F : B C
14 isrhmd.hp φ x B y B F x + ˙ y = F x ˙ F y
15 ringgrp R Ring R Grp
16 6 15 syl φ R Grp
17 ringgrp S Ring S Grp
18 7 17 syl φ S Grp
19 1 10 11 12 16 18 13 14 isghmd φ F R GrpHom S
20 1 2 3 4 5 6 7 8 9 19 isrhm2d φ F R RingHom S