Metamath Proof Explorer


Theorem isridl

Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses isridl.u U = LIdeal opp r R
isridl.b B = Base R
isridl.t · ˙ = R
Assertion isridl R Ring I U I SubGrp R x B y I y · ˙ x I

Proof

Step Hyp Ref Expression
1 isridl.u U = LIdeal opp r R
2 isridl.b B = Base R
3 isridl.t · ˙ = R
4 eqid opp r R = opp r R
5 4 opprring R Ring opp r R Ring
6 4 2 opprbas B = Base opp r R
7 eqid opp r R = opp r R
8 1 6 7 dflidl2 opp r R Ring I U I SubGrp opp r R x B y I x opp r R y I
9 5 8 syl R Ring I U I SubGrp opp r R x B y I x opp r R y I
10 4 opprsubg SubGrp R = SubGrp opp r R
11 10 eqcomi SubGrp opp r R = SubGrp R
12 11 a1i R Ring SubGrp opp r R = SubGrp R
13 12 eleq2d R Ring I SubGrp opp r R I SubGrp R
14 2 3 4 7 opprmul x opp r R y = y · ˙ x
15 14 eleq1i x opp r R y I y · ˙ x I
16 15 a1i R Ring x B y I x opp r R y I y · ˙ x I
17 16 ralbidva R Ring x B y I x opp r R y I y I y · ˙ x I
18 17 ralbidva R Ring x B y I x opp r R y I x B y I y · ˙ x I
19 13 18 anbi12d R Ring I SubGrp opp r R x B y I x opp r R y I I SubGrp R x B y I y · ˙ x I
20 9 19 bitrd R Ring I U I SubGrp R x B y I y · ˙ x I