Metamath Proof Explorer


Theorem isridlrng

Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025)

Ref Expression
Hypotheses isridlrng.u U = LIdeal opp r R
isridlrng.b B = Base R
isridlrng.t · ˙ = R
Assertion isridlrng R Rng I SubGrp R I U x B y I y · ˙ x I

Proof

Step Hyp Ref Expression
1 isridlrng.u U = LIdeal opp r R
2 isridlrng.b B = Base R
3 isridlrng.t · ˙ = R
4 eqid opp r R = opp r R
5 4 opprrng R Rng opp r R Rng
6 4 opprsubg SubGrp R = SubGrp opp r R
7 6 a1i R Rng SubGrp R = SubGrp opp r R
8 7 eleq2d R Rng I SubGrp R I SubGrp opp r R
9 8 biimpa R Rng I SubGrp R I SubGrp opp r R
10 4 2 opprbas B = Base opp r R
11 eqid opp r R = opp r R
12 1 10 11 dflidl2rng opp r R Rng I SubGrp opp r R I U x B y I x opp r R y I
13 5 9 12 syl2an2r R Rng I SubGrp R I U x B y I x opp r R y I
14 2 3 4 11 opprmul x opp r R y = y · ˙ x
15 14 eleq1i x opp r R y I y · ˙ x I
16 15 a1i R Rng I SubGrp R x B y I x opp r R y I y · ˙ x I
17 16 ralbidva R Rng I SubGrp R x B y I x opp r R y I y I y · ˙ x I
18 17 ralbidva R Rng I SubGrp R x B y I x opp r R y I x B y I y · ˙ x I
19 13 18 bitrd R Rng I SubGrp R I U x B y I y · ˙ x I