Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring homomorphisms
isrim
Next ⟩
rimf1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
isrim
Description:
An isomorphism of rings is a bijective homomorphism.
(Contributed by
AV
, 22-Oct-2019)
Ref
Expression
Hypotheses
rhmf1o.b
⊢
B
=
Base
R
rhmf1o.c
⊢
C
=
Base
S
Assertion
isrim
⊢
R
∈
V
∧
S
∈
W
→
F
∈
R
RingIso
S
↔
F
∈
R
RingHom
S
∧
F
:
B
⟶
1-1 onto
C
Proof
Step
Hyp
Ref
Expression
1
rhmf1o.b
⊢
B
=
Base
R
2
rhmf1o.c
⊢
C
=
Base
S
3
isrim0
⊢
R
∈
V
∧
S
∈
W
→
F
∈
R
RingIso
S
↔
F
∈
R
RingHom
S
∧
F
-1
∈
S
RingHom
R
4
1
2
rhmf1o
⊢
F
∈
R
RingHom
S
→
F
:
B
⟶
1-1 onto
C
↔
F
-1
∈
S
RingHom
R
5
4
bicomd
⊢
F
∈
R
RingHom
S
→
F
-1
∈
S
RingHom
R
↔
F
:
B
⟶
1-1 onto
C
6
5
a1i
⊢
R
∈
V
∧
S
∈
W
→
F
∈
R
RingHom
S
→
F
-1
∈
S
RingHom
R
↔
F
:
B
⟶
1-1 onto
C
7
6
pm5.32d
⊢
R
∈
V
∧
S
∈
W
→
F
∈
R
RingHom
S
∧
F
-1
∈
S
RingHom
R
↔
F
∈
R
RingHom
S
∧
F
:
B
⟶
1-1 onto
C
8
3
7
bitrd
⊢
R
∈
V
∧
S
∈
W
→
F
∈
R
RingIso
S
↔
F
∈
R
RingHom
S
∧
F
:
B
⟶
1-1 onto
C