Metamath Proof Explorer


Theorem isringid

Description: Properties showing that an element I is the unity element of a ring. (Contributed by NM, 7-Aug-2013)

Ref Expression
Hypotheses rngidm.b B = Base R
rngidm.t · ˙ = R
rngidm.u 1 ˙ = 1 R
Assertion isringid R Ring I B x B I · ˙ x = x x · ˙ I = x 1 ˙ = I

Proof

Step Hyp Ref Expression
1 rngidm.b B = Base R
2 rngidm.t · ˙ = R
3 rngidm.u 1 ˙ = 1 R
4 eqid mulGrp R = mulGrp R
5 4 1 mgpbas B = Base mulGrp R
6 4 3 ringidval 1 ˙ = 0 mulGrp R
7 4 2 mgpplusg · ˙ = + mulGrp R
8 1 2 ringideu R Ring ∃! y B x B y · ˙ x = x x · ˙ y = x
9 reurex ∃! y B x B y · ˙ x = x x · ˙ y = x y B x B y · ˙ x = x x · ˙ y = x
10 8 9 syl R Ring y B x B y · ˙ x = x x · ˙ y = x
11 5 6 7 10 ismgmid R Ring I B x B I · ˙ x = x x · ˙ I = x 1 ˙ = I