Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ring homomorphisms
isrisc
Next ⟩
risc
Metamath Proof Explorer
Ascii
Unicode
Theorem
isrisc
Description:
The ring isomorphism relation.
(Contributed by
Jeff Madsen
, 16-Jun-2011)
Ref
Expression
Hypotheses
isrisc.1
⊢
R
∈
V
isrisc.2
⊢
S
∈
V
Assertion
isrisc
⊢
R
≃
𝑟
S
↔
R
∈
RingOps
∧
S
∈
RingOps
∧
∃
f
f
∈
R
RngIso
S
Proof
Step
Hyp
Ref
Expression
1
isrisc.1
⊢
R
∈
V
2
isrisc.2
⊢
S
∈
V
3
isriscg
⊢
R
∈
V
∧
S
∈
V
→
R
≃
𝑟
S
↔
R
∈
RingOps
∧
S
∈
RingOps
∧
∃
f
f
∈
R
RngIso
S
4
1
2
3
mp2an
⊢
R
≃
𝑟
S
↔
R
∈
RingOps
∧
S
∈
RingOps
∧
∃
f
f
∈
R
RngIso
S