Metamath Proof Explorer


Theorem isrisc

Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses isrisc.1 R V
isrisc.2 S V
Assertion isrisc R 𝑟 S R RingOps S RingOps f f R RngIso S

Proof

Step Hyp Ref Expression
1 isrisc.1 R V
2 isrisc.2 S V
3 isriscg R V S V R 𝑟 S R RingOps S RingOps f f R RngIso S
4 1 2 3 mp2an R 𝑟 S R RingOps S RingOps f f R RngIso S