Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ring homomorphisms
isriscg
Next ⟩
isrisc
Metamath Proof Explorer
Ascii
Unicode
Theorem
isriscg
Description:
The ring isomorphism relation.
(Contributed by
Jeff Madsen
, 16-Jun-2011)
Ref
Expression
Assertion
isriscg
⊢
R
∈
A
∧
S
∈
B
→
R
≃
𝑟
S
↔
R
∈
RingOps
∧
S
∈
RingOps
∧
∃
f
f
∈
R
RngIso
S
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
r
=
R
→
r
∈
RingOps
↔
R
∈
RingOps
2
1
anbi1d
⊢
r
=
R
→
r
∈
RingOps
∧
s
∈
RingOps
↔
R
∈
RingOps
∧
s
∈
RingOps
3
oveq1
⊢
r
=
R
→
r
RngIso
s
=
R
RngIso
s
4
3
eleq2d
⊢
r
=
R
→
f
∈
r
RngIso
s
↔
f
∈
R
RngIso
s
5
4
exbidv
⊢
r
=
R
→
∃
f
f
∈
r
RngIso
s
↔
∃
f
f
∈
R
RngIso
s
6
2
5
anbi12d
⊢
r
=
R
→
r
∈
RingOps
∧
s
∈
RingOps
∧
∃
f
f
∈
r
RngIso
s
↔
R
∈
RingOps
∧
s
∈
RingOps
∧
∃
f
f
∈
R
RngIso
s
7
eleq1
⊢
s
=
S
→
s
∈
RingOps
↔
S
∈
RingOps
8
7
anbi2d
⊢
s
=
S
→
R
∈
RingOps
∧
s
∈
RingOps
↔
R
∈
RingOps
∧
S
∈
RingOps
9
oveq2
⊢
s
=
S
→
R
RngIso
s
=
R
RngIso
S
10
9
eleq2d
⊢
s
=
S
→
f
∈
R
RngIso
s
↔
f
∈
R
RngIso
S
11
10
exbidv
⊢
s
=
S
→
∃
f
f
∈
R
RngIso
s
↔
∃
f
f
∈
R
RngIso
S
12
8
11
anbi12d
⊢
s
=
S
→
R
∈
RingOps
∧
s
∈
RingOps
∧
∃
f
f
∈
R
RngIso
s
↔
R
∈
RingOps
∧
S
∈
RingOps
∧
∃
f
f
∈
R
RngIso
S
13
df-risc
⊢
≃
𝑟
=
r
s
|
r
∈
RingOps
∧
s
∈
RingOps
∧
∃
f
f
∈
r
RngIso
s
14
6
12
13
brabg
⊢
R
∈
A
∧
S
∈
B
→
R
≃
𝑟
S
↔
R
∈
RingOps
∧
S
∈
RingOps
∧
∃
f
f
∈
R
RngIso
S