| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isrng.b |
|
| 2 |
|
isrng.g |
|
| 3 |
|
isrng.p |
|
| 4 |
|
isrng.t |
|
| 5 |
|
fveq2 |
|
| 6 |
5 2
|
eqtr4di |
|
| 7 |
6
|
eleq1d |
|
| 8 |
|
fvexd |
|
| 9 |
|
fveq2 |
|
| 10 |
9 1
|
eqtr4di |
|
| 11 |
|
fvexd |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
adantr |
|
| 14 |
13 3
|
eqtr4di |
|
| 15 |
|
fvexd |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
adantr |
|
| 18 |
17
|
adantr |
|
| 19 |
18 4
|
eqtr4di |
|
| 20 |
|
simpllr |
|
| 21 |
|
simpr |
|
| 22 |
|
eqidd |
|
| 23 |
|
oveq |
|
| 24 |
23
|
ad2antlr |
|
| 25 |
21 22 24
|
oveq123d |
|
| 26 |
|
simpr |
|
| 27 |
26
|
adantr |
|
| 28 |
|
oveq |
|
| 29 |
28
|
adantl |
|
| 30 |
|
oveq |
|
| 31 |
30
|
adantl |
|
| 32 |
27 29 31
|
oveq123d |
|
| 33 |
25 32
|
eqeq12d |
|
| 34 |
|
oveq |
|
| 35 |
34
|
ad2antlr |
|
| 36 |
|
eqidd |
|
| 37 |
21 35 36
|
oveq123d |
|
| 38 |
|
oveq |
|
| 39 |
38
|
adantl |
|
| 40 |
27 31 39
|
oveq123d |
|
| 41 |
37 40
|
eqeq12d |
|
| 42 |
33 41
|
anbi12d |
|
| 43 |
20 42
|
raleqbidv |
|
| 44 |
20 43
|
raleqbidv |
|
| 45 |
20 44
|
raleqbidv |
|
| 46 |
15 19 45
|
sbcied2 |
|
| 47 |
11 14 46
|
sbcied2 |
|
| 48 |
8 10 47
|
sbcied2 |
|
| 49 |
7 48
|
anbi12d |
|
| 50 |
|
df-rng |
|
| 51 |
49 50
|
elrab2 |
|
| 52 |
|
3anass |
|
| 53 |
51 52
|
bitr4i |
|