Metamath Proof Explorer


Theorem isrngo

Description: The predicate "is a (unital) ring." Definition of ring with unit in Schechter p. 187. (Contributed by Jeff Hankins, 21-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis isring.1 X = ran G
Assertion isrngo H A G H RingOps G AbelOp H : X × X X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y

Proof

Step Hyp Ref Expression
1 isring.1 X = ran G
2 df-br G RingOps H G H RingOps
3 relrngo Rel RingOps
4 3 brrelex1i G RingOps H G V
5 2 4 sylbir G H RingOps G V
6 5 a1i H A G H RingOps G V
7 elex G AbelOp G V
8 7 ad2antrr G AbelOp H : X × X X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y G V
9 8 a1i H A G AbelOp H : X × X X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y G V
10 df-rngo RingOps = g h | g AbelOp h : ran g × ran g ran g x ran g y ran g z ran g x h y h z = x h y h z x h y g z = x h y g x h z x g y h z = x h z g y h z x ran g y ran g x h y = y y h x = y
11 10 eleq2i G H RingOps G H g h | g AbelOp h : ran g × ran g ran g x ran g y ran g z ran g x h y h z = x h y h z x h y g z = x h y g x h z x g y h z = x h z g y h z x ran g y ran g x h y = y y h x = y
12 simpl g = G h = H g = G
13 12 eleq1d g = G h = H g AbelOp G AbelOp
14 simpr g = G h = H h = H
15 12 rneqd g = G h = H ran g = ran G
16 15 1 eqtr4di g = G h = H ran g = X
17 16 sqxpeqd g = G h = H ran g × ran g = X × X
18 14 17 16 feq123d g = G h = H h : ran g × ran g ran g H : X × X X
19 13 18 anbi12d g = G h = H g AbelOp h : ran g × ran g ran g G AbelOp H : X × X X
20 14 oveqd g = G h = H x h y = x H y
21 eqidd g = G h = H z = z
22 14 20 21 oveq123d g = G h = H x h y h z = x H y H z
23 eqidd g = G h = H x = x
24 14 oveqd g = G h = H y h z = y H z
25 14 23 24 oveq123d g = G h = H x h y h z = x H y H z
26 22 25 eqeq12d g = G h = H x h y h z = x h y h z x H y H z = x H y H z
27 12 oveqd g = G h = H y g z = y G z
28 14 23 27 oveq123d g = G h = H x h y g z = x H y G z
29 14 oveqd g = G h = H x h z = x H z
30 12 20 29 oveq123d g = G h = H x h y g x h z = x H y G x H z
31 28 30 eqeq12d g = G h = H x h y g z = x h y g x h z x H y G z = x H y G x H z
32 12 oveqd g = G h = H x g y = x G y
33 14 32 21 oveq123d g = G h = H x g y h z = x G y H z
34 12 29 24 oveq123d g = G h = H x h z g y h z = x H z G y H z
35 33 34 eqeq12d g = G h = H x g y h z = x h z g y h z x G y H z = x H z G y H z
36 26 31 35 3anbi123d g = G h = H x h y h z = x h y h z x h y g z = x h y g x h z x g y h z = x h z g y h z x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z
37 16 36 raleqbidv g = G h = H z ran g x h y h z = x h y h z x h y g z = x h y g x h z x g y h z = x h z g y h z z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z
38 16 37 raleqbidv g = G h = H y ran g z ran g x h y h z = x h y h z x h y g z = x h y g x h z x g y h z = x h z g y h z y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z
39 16 38 raleqbidv g = G h = H x ran g y ran g z ran g x h y h z = x h y h z x h y g z = x h y g x h z x g y h z = x h z g y h z x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z
40 20 eqeq1d g = G h = H x h y = y x H y = y
41 14 oveqd g = G h = H y h x = y H x
42 41 eqeq1d g = G h = H y h x = y y H x = y
43 40 42 anbi12d g = G h = H x h y = y y h x = y x H y = y y H x = y
44 16 43 raleqbidv g = G h = H y ran g x h y = y y h x = y y X x H y = y y H x = y
45 16 44 rexeqbidv g = G h = H x ran g y ran g x h y = y y h x = y x X y X x H y = y y H x = y
46 39 45 anbi12d g = G h = H x ran g y ran g z ran g x h y h z = x h y h z x h y g z = x h y g x h z x g y h z = x h z g y h z x ran g y ran g x h y = y y h x = y x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y
47 19 46 anbi12d g = G h = H g AbelOp h : ran g × ran g ran g x ran g y ran g z ran g x h y h z = x h y h z x h y g z = x h y g x h z x g y h z = x h z g y h z x ran g y ran g x h y = y y h x = y G AbelOp H : X × X X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y
48 47 opelopabga G V H A G H g h | g AbelOp h : ran g × ran g ran g x ran g y ran g z ran g x h y h z = x h y h z x h y g z = x h y g x h z x g y h z = x h z g y h z x ran g y ran g x h y = y y h x = y G AbelOp H : X × X X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y
49 11 48 syl5bb G V H A G H RingOps G AbelOp H : X × X X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y
50 49 expcom H A G V G H RingOps G AbelOp H : X × X X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y
51 6 9 50 pm5.21ndd H A G H RingOps G AbelOp H : X × X X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y