Description: The predicate "is a (unital) ring." Definition of ring with unit in Schechter p. 187. (Contributed by Jeff Hankins, 21-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | isring.1 | |
|
Assertion | isrngo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isring.1 | |
|
2 | df-br | |
|
3 | relrngo | |
|
4 | 3 | brrelex1i | |
5 | 2 4 | sylbir | |
6 | 5 | a1i | |
7 | elex | |
|
8 | 7 | ad2antrr | |
9 | 8 | a1i | |
10 | df-rngo | |
|
11 | 10 | eleq2i | |
12 | simpl | |
|
13 | 12 | eleq1d | |
14 | simpr | |
|
15 | 12 | rneqd | |
16 | 15 1 | eqtr4di | |
17 | 16 | sqxpeqd | |
18 | 14 17 16 | feq123d | |
19 | 13 18 | anbi12d | |
20 | 14 | oveqd | |
21 | eqidd | |
|
22 | 14 20 21 | oveq123d | |
23 | eqidd | |
|
24 | 14 | oveqd | |
25 | 14 23 24 | oveq123d | |
26 | 22 25 | eqeq12d | |
27 | 12 | oveqd | |
28 | 14 23 27 | oveq123d | |
29 | 14 | oveqd | |
30 | 12 20 29 | oveq123d | |
31 | 28 30 | eqeq12d | |
32 | 12 | oveqd | |
33 | 14 32 21 | oveq123d | |
34 | 12 29 24 | oveq123d | |
35 | 33 34 | eqeq12d | |
36 | 26 31 35 | 3anbi123d | |
37 | 16 36 | raleqbidv | |
38 | 16 37 | raleqbidv | |
39 | 16 38 | raleqbidv | |
40 | 20 | eqeq1d | |
41 | 14 | oveqd | |
42 | 41 | eqeq1d | |
43 | 40 42 | anbi12d | |
44 | 16 43 | raleqbidv | |
45 | 16 44 | rexeqbidv | |
46 | 39 45 | anbi12d | |
47 | 19 46 | anbi12d | |
48 | 47 | opelopabga | |
49 | 11 48 | syl5bb | |
50 | 49 | expcom | |
51 | 6 9 50 | pm5.21ndd | |