Metamath Proof Explorer


Theorem isrngo

Description: The predicate "is a (unital) ring." Definition of ring with unit in Schechter p. 187. (Contributed by Jeff Hankins, 21-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis isring.1 X=ranG
Assertion isrngo HAGHRingOpsGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y

Proof

Step Hyp Ref Expression
1 isring.1 X=ranG
2 df-br GRingOpsHGHRingOps
3 relrngo RelRingOps
4 3 brrelex1i GRingOpsHGV
5 2 4 sylbir GHRingOpsGV
6 5 a1i HAGHRingOpsGV
7 elex GAbelOpGV
8 7 ad2antrr GAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=yGV
9 8 a1i HAGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=yGV
10 df-rngo RingOps=gh|gAbelOph:rang×rangrangxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxrangyrangxhy=yyhx=y
11 10 eleq2i GHRingOpsGHgh|gAbelOph:rang×rangrangxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxrangyrangxhy=yyhx=y
12 simpl g=Gh=Hg=G
13 12 eleq1d g=Gh=HgAbelOpGAbelOp
14 simpr g=Gh=Hh=H
15 12 rneqd g=Gh=Hrang=ranG
16 15 1 eqtr4di g=Gh=Hrang=X
17 16 sqxpeqd g=Gh=Hrang×rang=X×X
18 14 17 16 feq123d g=Gh=Hh:rang×rangrangH:X×XX
19 13 18 anbi12d g=Gh=HgAbelOph:rang×rangrangGAbelOpH:X×XX
20 14 oveqd g=Gh=Hxhy=xHy
21 eqidd g=Gh=Hz=z
22 14 20 21 oveq123d g=Gh=Hxhyhz=xHyHz
23 eqidd g=Gh=Hx=x
24 14 oveqd g=Gh=Hyhz=yHz
25 14 23 24 oveq123d g=Gh=Hxhyhz=xHyHz
26 22 25 eqeq12d g=Gh=Hxhyhz=xhyhzxHyHz=xHyHz
27 12 oveqd g=Gh=Hygz=yGz
28 14 23 27 oveq123d g=Gh=Hxhygz=xHyGz
29 14 oveqd g=Gh=Hxhz=xHz
30 12 20 29 oveq123d g=Gh=Hxhygxhz=xHyGxHz
31 28 30 eqeq12d g=Gh=Hxhygz=xhygxhzxHyGz=xHyGxHz
32 12 oveqd g=Gh=Hxgy=xGy
33 14 32 21 oveq123d g=Gh=Hxgyhz=xGyHz
34 12 29 24 oveq123d g=Gh=Hxhzgyhz=xHzGyHz
35 33 34 eqeq12d g=Gh=Hxgyhz=xhzgyhzxGyHz=xHzGyHz
36 26 31 35 3anbi123d g=Gh=Hxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
37 16 36 raleqbidv g=Gh=Hzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
38 16 37 raleqbidv g=Gh=Hyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
39 16 38 raleqbidv g=Gh=Hxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
40 20 eqeq1d g=Gh=Hxhy=yxHy=y
41 14 oveqd g=Gh=Hyhx=yHx
42 41 eqeq1d g=Gh=Hyhx=yyHx=y
43 40 42 anbi12d g=Gh=Hxhy=yyhx=yxHy=yyHx=y
44 16 43 raleqbidv g=Gh=Hyrangxhy=yyhx=yyXxHy=yyHx=y
45 16 44 rexeqbidv g=Gh=Hxrangyrangxhy=yyhx=yxXyXxHy=yyHx=y
46 39 45 anbi12d g=Gh=Hxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxrangyrangxhy=yyhx=yxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
47 19 46 anbi12d g=Gh=HgAbelOph:rang×rangrangxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxrangyrangxhy=yyhx=yGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
48 47 opelopabga GVHAGHgh|gAbelOph:rang×rangrangxrangyrangzrangxhyhz=xhyhzxhygz=xhygxhzxgyhz=xhzgyhzxrangyrangxhy=yyhx=yGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
49 11 48 syl5bb GVHAGHRingOpsGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
50 49 expcom HAGVGHRingOpsGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
51 6 9 50 pm5.21ndd HAGHRingOpsGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y