Metamath Proof Explorer


Theorem isrngoiso

Description: The predicate "is a ring isomorphism between R and S ". (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses rngisoval.1 G = 1 st R
rngisoval.2 X = ran G
rngisoval.3 J = 1 st S
rngisoval.4 Y = ran J
Assertion isrngoiso R RingOps S RingOps F R RngIso S F R RngHom S F : X 1-1 onto Y

Proof

Step Hyp Ref Expression
1 rngisoval.1 G = 1 st R
2 rngisoval.2 X = ran G
3 rngisoval.3 J = 1 st S
4 rngisoval.4 Y = ran J
5 1 2 3 4 rngoisoval R RingOps S RingOps R RngIso S = f R RngHom S | f : X 1-1 onto Y
6 5 eleq2d R RingOps S RingOps F R RngIso S F f R RngHom S | f : X 1-1 onto Y
7 f1oeq1 f = F f : X 1-1 onto Y F : X 1-1 onto Y
8 7 elrab F f R RngHom S | f : X 1-1 onto Y F R RngHom S F : X 1-1 onto Y
9 6 8 bitrdi R RingOps S RingOps F R RngIso S F R RngHom S F : X 1-1 onto Y