Metamath Proof Explorer


Theorem isrrg

Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Hypotheses rrgval.e E = RLReg R
rrgval.b B = Base R
rrgval.t · ˙ = R
rrgval.z 0 ˙ = 0 R
Assertion isrrg X E X B y B X · ˙ y = 0 ˙ y = 0 ˙

Proof

Step Hyp Ref Expression
1 rrgval.e E = RLReg R
2 rrgval.b B = Base R
3 rrgval.t · ˙ = R
4 rrgval.z 0 ˙ = 0 R
5 oveq1 x = X x · ˙ y = X · ˙ y
6 5 eqeq1d x = X x · ˙ y = 0 ˙ X · ˙ y = 0 ˙
7 6 imbi1d x = X x · ˙ y = 0 ˙ y = 0 ˙ X · ˙ y = 0 ˙ y = 0 ˙
8 7 ralbidv x = X y B x · ˙ y = 0 ˙ y = 0 ˙ y B X · ˙ y = 0 ˙ y = 0 ˙
9 1 2 3 4 rrgval E = x B | y B x · ˙ y = 0 ˙ y = 0 ˙
10 8 9 elrab2 X E X B y B X · ˙ y = 0 ˙ y = 0 ˙