Metamath Proof Explorer


Theorem isrusgr0

Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypotheses isrusgr0.v V = Vtx G
isrusgr0.d D = VtxDeg G
Assertion isrusgr0 G W K Z G RegUSGraph K G USGraph K 0 * v V D v = K

Proof

Step Hyp Ref Expression
1 isrusgr0.v V = Vtx G
2 isrusgr0.d D = VtxDeg G
3 isrusgr G W K Z G RegUSGraph K G USGraph G RegGraph K
4 1 2 isrgr G W K Z G RegGraph K K 0 * v V D v = K
5 4 anbi2d G W K Z G USGraph G RegGraph K G USGraph K 0 * v V D v = K
6 3anass G USGraph K 0 * v V D v = K G USGraph K 0 * v V D v = K
7 5 6 bitr4di G W K Z G USGraph G RegGraph K G USGraph K 0 * v V D v = K
8 3 7 bitrd G W K Z G RegUSGraph K G USGraph K 0 * v V D v = K