Database
BASIC CATEGORY THEORY
Categories
Sections, inverses, isomorphisms
issect2
Next ⟩
sectcan
Metamath Proof Explorer
Ascii
Unicode
Theorem
issect2
Description:
Property of being a section.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Hypotheses
issect.b
⊢
B
=
Base
C
issect.h
⊢
H
=
Hom
⁡
C
issect.o
⊢
·
˙
=
comp
⁡
C
issect.i
⊢
1
˙
=
Id
⁡
C
issect.s
⊢
S
=
Sect
⁡
C
issect.c
⊢
φ
→
C
∈
Cat
issect.x
⊢
φ
→
X
∈
B
issect.y
⊢
φ
→
Y
∈
B
issect.f
⊢
φ
→
F
∈
X
H
Y
issect.g
⊢
φ
→
G
∈
Y
H
X
Assertion
issect2
⊢
φ
→
F
X
S
Y
G
↔
G
X
Y
·
˙
X
F
=
1
˙
⁡
X
Proof
Step
Hyp
Ref
Expression
1
issect.b
⊢
B
=
Base
C
2
issect.h
⊢
H
=
Hom
⁡
C
3
issect.o
⊢
·
˙
=
comp
⁡
C
4
issect.i
⊢
1
˙
=
Id
⁡
C
5
issect.s
⊢
S
=
Sect
⁡
C
6
issect.c
⊢
φ
→
C
∈
Cat
7
issect.x
⊢
φ
→
X
∈
B
8
issect.y
⊢
φ
→
Y
∈
B
9
issect.f
⊢
φ
→
F
∈
X
H
Y
10
issect.g
⊢
φ
→
G
∈
Y
H
X
11
9
10
jca
⊢
φ
→
F
∈
X
H
Y
∧
G
∈
Y
H
X
12
1
2
3
4
5
6
7
8
issect
⊢
φ
→
F
X
S
Y
G
↔
F
∈
X
H
Y
∧
G
∈
Y
H
X
∧
G
X
Y
·
˙
X
F
=
1
˙
⁡
X
13
df-3an
⊢
F
∈
X
H
Y
∧
G
∈
Y
H
X
∧
G
X
Y
·
˙
X
F
=
1
˙
⁡
X
↔
F
∈
X
H
Y
∧
G
∈
Y
H
X
∧
G
X
Y
·
˙
X
F
=
1
˙
⁡
X
14
12
13
bitrdi
⊢
φ
→
F
X
S
Y
G
↔
F
∈
X
H
Y
∧
G
∈
Y
H
X
∧
G
X
Y
·
˙
X
F
=
1
˙
⁡
X
15
11
14
mpbirand
⊢
φ
→
F
X
S
Y
G
↔
G
X
Y
·
˙
X
F
=
1
˙
⁡
X