Metamath Proof Explorer


Theorem issetft

Description: Closed theorem form of isset that does not require x and A to be distinct. Extracted from the proof of vtoclgft . (Contributed by Wolf Lammen, 9-Apr-2025)

Ref Expression
Assertion issetft _ x A A V x x = A

Proof

Step Hyp Ref Expression
1 isset A V y y = A
2 nfv y _ x A
3 nfnfc1 x _ x A
4 nfcvd _ x A _ x y
5 id _ x A _ x A
6 4 5 nfeqd _ x A x y = A
7 6 nfnd _ x A x ¬ y = A
8 nfvd _ x A y ¬ x = A
9 eqeq1 y = x y = A x = A
10 9 notbid y = x ¬ y = A ¬ x = A
11 10 a1i _ x A y = x ¬ y = A ¬ x = A
12 2 3 7 8 11 cbv2w _ x A y ¬ y = A x ¬ x = A
13 alnex y ¬ y = A ¬ y y = A
14 alnex x ¬ x = A ¬ x x = A
15 12 13 14 3bitr3g _ x A ¬ y y = A ¬ x x = A
16 15 con4bid _ x A y y = A x x = A
17 1 16 bitrid _ x A A V x x = A