Metamath Proof Explorer


Theorem issgrpd

Description: Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses issgrpd.b φ B = Base G
issgrpd.p φ + ˙ = + G
issgrpd.c φ x B y B x + ˙ y B
issgrpd.a φ x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
issgrpd.v φ G V
Assertion issgrpd Could not format assertion : No typesetting found for |- ( ph -> G e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 issgrpd.b φ B = Base G
2 issgrpd.p φ + ˙ = + G
3 issgrpd.c φ x B y B x + ˙ y B
4 issgrpd.a φ x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
5 issgrpd.v φ G V
6 3 3expib φ x B y B x + ˙ y B
7 1 eleq2d φ x B x Base G
8 1 eleq2d φ y B y Base G
9 7 8 anbi12d φ x B y B x Base G y Base G
10 2 oveqd φ x + ˙ y = x + G y
11 10 1 eleq12d φ x + ˙ y B x + G y Base G
12 6 9 11 3imtr3d φ x Base G y Base G x + G y Base G
13 12 imp φ x Base G y Base G x + G y Base G
14 df-3an x B y B z B x B y B z B
15 14 4 sylan2br φ x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
16 15 ex φ x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
17 1 eleq2d φ z B z Base G
18 9 17 anbi12d φ x B y B z B x Base G y Base G z Base G
19 eqidd φ z = z
20 2 10 19 oveq123d φ x + ˙ y + ˙ z = x + G y + G z
21 eqidd φ x = x
22 2 oveqd φ y + ˙ z = y + G z
23 2 21 22 oveq123d φ x + ˙ y + ˙ z = x + G y + G z
24 20 23 eqeq12d φ x + ˙ y + ˙ z = x + ˙ y + ˙ z x + G y + G z = x + G y + G z
25 16 18 24 3imtr3d φ x Base G y Base G z Base G x + G y + G z = x + G y + G z
26 25 impl φ x Base G y Base G z Base G x + G y + G z = x + G y + G z
27 26 ralrimiva φ x Base G y Base G z Base G x + G y + G z = x + G y + G z
28 13 27 jca φ x Base G y Base G x + G y Base G z Base G x + G y + G z = x + G y + G z
29 28 ralrimivva φ x Base G y Base G x + G y Base G z Base G x + G y + G z = x + G y + G z
30 eqid Base G = Base G
31 eqid + G = + G
32 30 31 issgrpv Could not format ( G e. V -> ( G e. Smgrp <-> A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ A. z e. ( Base ` G ) ( ( x ( +g ` G ) y ) ( +g ` G ) z ) = ( x ( +g ` G ) ( y ( +g ` G ) z ) ) ) ) ) : No typesetting found for |- ( G e. V -> ( G e. Smgrp <-> A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ A. z e. ( Base ` G ) ( ( x ( +g ` G ) y ) ( +g ` G ) z ) = ( x ( +g ` G ) ( y ( +g ` G ) z ) ) ) ) ) with typecode |-
33 5 32 syl Could not format ( ph -> ( G e. Smgrp <-> A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ A. z e. ( Base ` G ) ( ( x ( +g ` G ) y ) ( +g ` G ) z ) = ( x ( +g ` G ) ( y ( +g ` G ) z ) ) ) ) ) : No typesetting found for |- ( ph -> ( G e. Smgrp <-> A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ A. z e. ( Base ` G ) ( ( x ( +g ` G ) y ) ( +g ` G ) z ) = ( x ( +g ` G ) ( y ( +g ` G ) z ) ) ) ) ) with typecode |-
34 29 33 mpbird Could not format ( ph -> G e. Smgrp ) : No typesetting found for |- ( ph -> G e. Smgrp ) with typecode |-