Metamath Proof Explorer


Theorem issh2

Description: Subspace H of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of Beran p. 95. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion issh2 H S H 0 H x H y H x + y H x y H x y H

Proof

Step Hyp Ref Expression
1 issh H S H 0 H + H × H H × H H
2 ax-hfvadd + : ×
3 ffun + : × Fun +
4 2 3 ax-mp Fun +
5 xpss12 H H H × H ×
6 5 anidms H H × H ×
7 2 fdmi dom + = ×
8 6 7 sseqtrrdi H H × H dom +
9 funimassov Fun + H × H dom + + H × H H x H y H x + y H
10 4 8 9 sylancr H + H × H H x H y H x + y H
11 ax-hfvmul : ×
12 ffun : × Fun
13 11 12 ax-mp Fun
14 xpss2 H × H ×
15 11 fdmi dom = ×
16 14 15 sseqtrrdi H × H dom
17 funimassov Fun × H dom × H H x y H x y H
18 13 16 17 sylancr H × H H x y H x y H
19 10 18 anbi12d H + H × H H × H H x H y H x + y H x y H x y H
20 19 adantr H 0 H + H × H H × H H x H y H x + y H x y H x y H
21 20 pm5.32i H 0 H + H × H H × H H H 0 H x H y H x + y H x y H x y H
22 1 21 bitri H S H 0 H x H y H x + y H x y H x y H