Metamath Proof Explorer


Theorem issmgrpOLD

Description: Obsolete version of issgrp as of 3-Feb-2020. The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis issmgrpOLD.1 X = dom dom G
Assertion issmgrpOLD G A G SemiGrp G : X × X X x X y X z X x G y G z = x G y G z

Proof

Step Hyp Ref Expression
1 issmgrpOLD.1 X = dom dom G
2 df-sgrOLD SemiGrp = Magma Ass
3 2 eleq2i G SemiGrp G Magma Ass
4 elin G Magma Ass G Magma G Ass
5 1 ismgmOLD G A G Magma G : X × X X
6 1 isass G A G Ass x X y X z X x G y G z = x G y G z
7 5 6 anbi12d G A G Magma G Ass G : X × X X x X y X z X x G y G z = x G y G z
8 4 7 syl5bb G A G Magma Ass G : X × X X x X y X z X x G y G z = x G y G z
9 3 8 syl5bb G A G SemiGrp G : X × X X x X y X z X x G y G z = x G y G z