Metamath Proof Explorer


Theorem issmo2

Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013)

Ref Expression
Assertion issmo2 F : A B B On Ord A x A y x F y F x Smo F

Proof

Step Hyp Ref Expression
1 fss F : A B B On F : A On
2 1 ex F : A B B On F : A On
3 fdm F : A B dom F = A
4 3 feq2d F : A B F : dom F On F : A On
5 2 4 sylibrd F : A B B On F : dom F On
6 ordeq dom F = A Ord dom F Ord A
7 3 6 syl F : A B Ord dom F Ord A
8 7 biimprd F : A B Ord A Ord dom F
9 3 raleqdv F : A B x dom F y x F y F x x A y x F y F x
10 9 biimprd F : A B x A y x F y F x x dom F y x F y F x
11 5 8 10 3anim123d F : A B B On Ord A x A y x F y F x F : dom F On Ord dom F x dom F y x F y F x
12 dfsmo2 Smo F F : dom F On Ord dom F x dom F y x F y F x
13 11 12 syl6ibr F : A B B On Ord A x A y x F y F x Smo F