Metamath Proof Explorer


Theorem issn

Description: A sufficient condition for a (nonempty) set to be a singleton. (Contributed by AV, 20-Sep-2020)

Ref Expression
Assertion issn x A y A x = y z A = z

Proof

Step Hyp Ref Expression
1 equcom x = y y = x
2 1 a1i x A x = y y = x
3 2 ralbidv x A y A x = y y A y = x
4 ne0i x A A
5 eqsn A A = x y A y = x
6 4 5 syl x A A = x y A y = x
7 3 6 bitr4d x A y A x = y A = x
8 sneq z = x z = x
9 8 eqeq2d z = x A = z A = x
10 9 spcegv x A A = x z A = z
11 7 10 sylbid x A y A x = y z A = z
12 11 rexlimiv x A y A x = y z A = z