Metamath Proof Explorer
Description: An irreflexive, transitive, linear relation is a strict ordering.
(Contributed by NM, 21-Jan-1996) (Revised by Mario Carneiro, 9-Jul-2014)
|
|
Ref |
Expression |
|
Hypotheses |
issod.1 |
|
|
|
issod.2 |
|
|
Assertion |
issod |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
issod.1 |
|
2 |
|
issod.2 |
|
3 |
2
|
ralrimivva |
|
4 |
|
df-so |
|
5 |
1 3 4
|
sylanbrc |
|