Metamath Proof Explorer


Theorem issod

Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses issod.1 φ R Po A
issod.2 φ x A y A x R y x = y y R x
Assertion issod φ R Or A

Proof

Step Hyp Ref Expression
1 issod.1 φ R Po A
2 issod.2 φ x A y A x R y x = y y R x
3 2 ralrimivva φ x A y A x R y x = y y R x
4 df-so R Or A R Po A x A y A x R y x = y y R x
5 1 3 4 sylanbrc φ R Or A