Metamath Proof Explorer


Theorem isspth

Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017) (Revised by AV, 9-Jan-2021) (Revised by AV, 29-Oct-2021)

Ref Expression
Assertion isspth F SPaths G P F Trails G P Fun P -1

Proof

Step Hyp Ref Expression
1 spthsfval SPaths G = f p | f Trails G p Fun p -1
2 cnveq p = P p -1 = P -1
3 2 funeqd p = P Fun p -1 Fun P -1
4 3 adantl f = F p = P Fun p -1 Fun P -1
5 reltrls Rel Trails G
6 1 4 5 brfvopabrbr F SPaths G P F Trails G P Fun P -1