Metamath Proof Explorer


Theorem issqf

Description: Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion issqf A μ A 0 p p pCnt A 1

Proof

Step Hyp Ref Expression
1 isnsqf A μ A = 0 p p 2 A
2 1 necon3abid A μ A 0 ¬ p p 2 A
3 ralnex p ¬ p 2 A ¬ p p 2 A
4 1nn0 1 0
5 pccl p A p pCnt A 0
6 5 ancoms A p p pCnt A 0
7 nn0ltp1le 1 0 p pCnt A 0 1 < p pCnt A 1 + 1 p pCnt A
8 4 6 7 sylancr A p 1 < p pCnt A 1 + 1 p pCnt A
9 1re 1
10 6 nn0red A p p pCnt A
11 ltnle 1 p pCnt A 1 < p pCnt A ¬ p pCnt A 1
12 9 10 11 sylancr A p 1 < p pCnt A ¬ p pCnt A 1
13 df-2 2 = 1 + 1
14 13 breq1i 2 p pCnt A 1 + 1 p pCnt A
15 id p p
16 nnz A A
17 2nn0 2 0
18 pcdvdsb p A 2 0 2 p pCnt A p 2 A
19 17 18 mp3an3 p A 2 p pCnt A p 2 A
20 15 16 19 syl2anr A p 2 p pCnt A p 2 A
21 14 20 bitr3id A p 1 + 1 p pCnt A p 2 A
22 8 12 21 3bitr3d A p ¬ p pCnt A 1 p 2 A
23 22 con1bid A p ¬ p 2 A p pCnt A 1
24 23 ralbidva A p ¬ p 2 A p p pCnt A 1
25 3 24 bitr3id A ¬ p p 2 A p p pCnt A 1
26 2 25 bitrd A μ A 0 p p pCnt A 1