Step |
Hyp |
Ref |
Expression |
1 |
|
issrg.b |
|
2 |
|
issrg.g |
|
3 |
|
issrg.p |
|
4 |
|
issrg.t |
|
5 |
|
issrg.0 |
|
6 |
2
|
eleq1i |
|
7 |
6
|
bicomi |
|
8 |
1
|
fvexi |
|
9 |
3
|
fvexi |
|
10 |
4
|
fvexi |
|
11 |
10
|
a1i |
|
12 |
5
|
fvexi |
|
13 |
12
|
a1i |
|
14 |
|
simplll |
|
15 |
|
simplr |
|
16 |
|
eqidd |
|
17 |
|
simpllr |
|
18 |
17
|
oveqd |
|
19 |
15 16 18
|
oveq123d |
|
20 |
15
|
oveqd |
|
21 |
15
|
oveqd |
|
22 |
17 20 21
|
oveq123d |
|
23 |
19 22
|
eqeq12d |
|
24 |
17
|
oveqd |
|
25 |
|
eqidd |
|
26 |
15 24 25
|
oveq123d |
|
27 |
15
|
oveqd |
|
28 |
17 21 27
|
oveq123d |
|
29 |
26 28
|
eqeq12d |
|
30 |
23 29
|
anbi12d |
|
31 |
14 30
|
raleqbidv |
|
32 |
14 31
|
raleqbidv |
|
33 |
|
simpr |
|
34 |
15 33 16
|
oveq123d |
|
35 |
34 33
|
eqeq12d |
|
36 |
15 16 33
|
oveq123d |
|
37 |
36 33
|
eqeq12d |
|
38 |
35 37
|
anbi12d |
|
39 |
32 38
|
anbi12d |
|
40 |
14 39
|
raleqbidv |
|
41 |
13 40
|
sbcied |
|
42 |
11 41
|
sbcied |
|
43 |
8 9 42
|
sbc2ie |
|
44 |
7 43
|
anbi12i |
|
45 |
44
|
anbi2i |
|
46 |
|
fveq2 |
|
47 |
46
|
eleq1d |
|
48 |
|
fveq2 |
|
49 |
48 1
|
eqtr4di |
|
50 |
|
fveq2 |
|
51 |
50 3
|
eqtr4di |
|
52 |
|
fveq2 |
|
53 |
52 4
|
eqtr4di |
|
54 |
|
fveq2 |
|
55 |
54 5
|
eqtr4di |
|
56 |
55
|
sbceq1d |
|
57 |
53 56
|
sbceqbid |
|
58 |
51 57
|
sbceqbid |
|
59 |
49 58
|
sbceqbid |
|
60 |
47 59
|
anbi12d |
|
61 |
|
df-srg |
|
62 |
60 61
|
elrab2 |
|
63 |
|
3anass |
|
64 |
45 62 63
|
3bitr4i |
|