Metamath Proof Explorer


Theorem isssc

Description: Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses isssc.1 φ H Fn S × S
isssc.2 φ J Fn T × T
isssc.3 φ T V
Assertion isssc φ H cat J S T x S y S x H y x J y

Proof

Step Hyp Ref Expression
1 isssc.1 φ H Fn S × S
2 isssc.2 φ J Fn T × T
3 isssc.3 φ T V
4 brssc H cat J t J Fn t × t s 𝒫 t H z s × s 𝒫 J z
5 fndm J Fn t × t dom J = t × t
6 5 adantl φ J Fn t × t dom J = t × t
7 2 adantr φ J Fn t × t J Fn T × T
8 7 fndmd φ J Fn t × t dom J = T × T
9 6 8 eqtr3d φ J Fn t × t t × t = T × T
10 9 dmeqd φ J Fn t × t dom t × t = dom T × T
11 dmxpid dom t × t = t
12 dmxpid dom T × T = T
13 10 11 12 3eqtr3g φ J Fn t × t t = T
14 13 ex φ J Fn t × t t = T
15 id t = T t = T
16 15 sqxpeqd t = T t × t = T × T
17 16 fneq2d t = T J Fn t × t J Fn T × T
18 2 17 syl5ibrcom φ t = T J Fn t × t
19 14 18 impbid φ J Fn t × t t = T
20 19 anbi1d φ J Fn t × t s 𝒫 t H z s × s 𝒫 J z t = T s 𝒫 t H z s × s 𝒫 J z
21 20 exbidv φ t J Fn t × t s 𝒫 t H z s × s 𝒫 J z t t = T s 𝒫 t H z s × s 𝒫 J z
22 4 21 syl5bb φ H cat J t t = T s 𝒫 t H z s × s 𝒫 J z
23 pweq t = T 𝒫 t = 𝒫 T
24 23 rexeqdv t = T s 𝒫 t H z s × s 𝒫 J z s 𝒫 T H z s × s 𝒫 J z
25 24 ceqsexgv T V t t = T s 𝒫 t H z s × s 𝒫 J z s 𝒫 T H z s × s 𝒫 J z
26 3 25 syl φ t t = T s 𝒫 t H z s × s 𝒫 J z s 𝒫 T H z s × s 𝒫 J z
27 22 26 bitrd φ H cat J s 𝒫 T H z s × s 𝒫 J z
28 df-rex s 𝒫 T H z s × s 𝒫 J z s s 𝒫 T H z s × s 𝒫 J z
29 3anass H V H Fn s × s z s × s H z 𝒫 J z H V H Fn s × s z s × s H z 𝒫 J z
30 elixp2 H z s × s 𝒫 J z H V H Fn s × s z s × s H z 𝒫 J z
31 vex s V
32 31 31 xpex s × s V
33 fnex H Fn s × s s × s V H V
34 32 33 mpan2 H Fn s × s H V
35 34 adantr H Fn s × s z s × s H z 𝒫 J z H V
36 35 pm4.71ri H Fn s × s z s × s H z 𝒫 J z H V H Fn s × s z s × s H z 𝒫 J z
37 29 30 36 3bitr4i H z s × s 𝒫 J z H Fn s × s z s × s H z 𝒫 J z
38 fndm H Fn s × s dom H = s × s
39 38 adantl φ H Fn s × s dom H = s × s
40 1 adantr φ H Fn s × s H Fn S × S
41 40 fndmd φ H Fn s × s dom H = S × S
42 39 41 eqtr3d φ H Fn s × s s × s = S × S
43 42 dmeqd φ H Fn s × s dom s × s = dom S × S
44 dmxpid dom s × s = s
45 dmxpid dom S × S = S
46 43 44 45 3eqtr3g φ H Fn s × s s = S
47 46 ex φ H Fn s × s s = S
48 id s = S s = S
49 48 sqxpeqd s = S s × s = S × S
50 49 fneq2d s = S H Fn s × s H Fn S × S
51 1 50 syl5ibrcom φ s = S H Fn s × s
52 47 51 impbid φ H Fn s × s s = S
53 52 anbi1d φ H Fn s × s z s × s H z 𝒫 J z s = S z s × s H z 𝒫 J z
54 37 53 syl5bb φ H z s × s 𝒫 J z s = S z s × s H z 𝒫 J z
55 54 anbi2d φ s 𝒫 T H z s × s 𝒫 J z s 𝒫 T s = S z s × s H z 𝒫 J z
56 an12 s 𝒫 T s = S z s × s H z 𝒫 J z s = S s 𝒫 T z s × s H z 𝒫 J z
57 55 56 bitrdi φ s 𝒫 T H z s × s 𝒫 J z s = S s 𝒫 T z s × s H z 𝒫 J z
58 57 exbidv φ s s 𝒫 T H z s × s 𝒫 J z s s = S s 𝒫 T z s × s H z 𝒫 J z
59 28 58 syl5bb φ s 𝒫 T H z s × s 𝒫 J z s s = S s 𝒫 T z s × s H z 𝒫 J z
60 exsimpl s s = S s 𝒫 T z s × s H z 𝒫 J z s s = S
61 isset S V s s = S
62 60 61 sylibr s s = S s 𝒫 T z s × s H z 𝒫 J z S V
63 62 a1i φ s s = S s 𝒫 T z s × s H z 𝒫 J z S V
64 ssexg S T T V S V
65 64 expcom T V S T S V
66 3 65 syl φ S T S V
67 66 adantrd φ S T x S y S x H y x J y S V
68 31 elpw s 𝒫 T s T
69 sseq1 s = S s T S T
70 68 69 syl5bb s = S s 𝒫 T S T
71 49 raleqdv s = S z s × s H z 𝒫 J z z S × S H z 𝒫 J z
72 fvex H z V
73 72 elpw H z 𝒫 J z H z J z
74 fveq2 z = x y H z = H x y
75 df-ov x H y = H x y
76 74 75 eqtr4di z = x y H z = x H y
77 fveq2 z = x y J z = J x y
78 df-ov x J y = J x y
79 77 78 eqtr4di z = x y J z = x J y
80 76 79 sseq12d z = x y H z J z x H y x J y
81 73 80 syl5bb z = x y H z 𝒫 J z x H y x J y
82 81 ralxp z S × S H z 𝒫 J z x S y S x H y x J y
83 71 82 bitrdi s = S z s × s H z 𝒫 J z x S y S x H y x J y
84 70 83 anbi12d s = S s 𝒫 T z s × s H z 𝒫 J z S T x S y S x H y x J y
85 84 ceqsexgv S V s s = S s 𝒫 T z s × s H z 𝒫 J z S T x S y S x H y x J y
86 85 a1i φ S V s s = S s 𝒫 T z s × s H z 𝒫 J z S T x S y S x H y x J y
87 63 67 86 pm5.21ndd φ s s = S s 𝒫 T z s × s H z 𝒫 J z S T x S y S x H y x J y
88 27 59 87 3bitrd φ H cat J S T x S y S x H y x J y