| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issstrmgm.b |  | 
						
							| 2 |  | issstrmgm.p |  | 
						
							| 3 |  | issstrmgm.h |  | 
						
							| 4 |  | simplr |  | 
						
							| 5 |  | simplr |  | 
						
							| 6 | 3 1 | ressbas2 |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 7 | eleq2d |  | 
						
							| 9 | 8 | biimpcd |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 10 | impcom |  | 
						
							| 12 | 7 | eleq2d |  | 
						
							| 13 | 12 | biimpcd |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 | 14 | impcom |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 16 17 | mgmcl |  | 
						
							| 19 | 4 11 15 18 | syl3anc |  | 
						
							| 20 | 1 | fvexi |  | 
						
							| 21 | 20 | ssex |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 | 3 2 | ressplusg |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 25 | oveqdr |  | 
						
							| 27 | 7 | adantr |  | 
						
							| 28 | 19 26 27 | 3eltr4d |  | 
						
							| 29 | 28 | ralrimivva |  | 
						
							| 30 | 6 | adantl |  | 
						
							| 31 | 24 | oveqd |  | 
						
							| 32 | 31 30 | eleq12d |  | 
						
							| 33 | 30 32 | raleqbidv |  | 
						
							| 34 | 30 33 | raleqbidv |  | 
						
							| 35 | 34 | biimpa |  | 
						
							| 36 | 16 17 | ismgm |  | 
						
							| 37 | 36 | ad2antrr |  | 
						
							| 38 | 35 37 | mpbird |  | 
						
							| 39 | 29 38 | impbida |  |