Metamath Proof Explorer


Theorem isstruct

Description: The property of being a structure with components in M ... N . (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Assertion isstruct F Struct M N M N M N Fun F dom F M N

Proof

Step Hyp Ref Expression
1 isstruct2 F Struct M N M N × Fun F dom F M N
2 df-3an M N M N M N M N
3 brinxp2 M × N M N M N
4 df-br M × N M N ×
5 2 3 4 3bitr2i M N M N M N ×
6 biid Fun F Fun F
7 df-ov M N = M N
8 7 sseq2i dom F M N dom F M N
9 5 6 8 3anbi123i M N M N Fun F dom F M N M N × Fun F dom F M N
10 1 9 bitr4i F Struct M N M N M N Fun F dom F M N