Metamath Proof Explorer


Theorem isstruct2

Description: The property of being a structure with components in ( 1stX ) ... ( 2ndX ) . (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Assertion isstruct2 F Struct X X × Fun F dom F X

Proof

Step Hyp Ref Expression
1 brstruct Rel Struct
2 1 brrelex12i F Struct X F V X V
3 ssun1 F F
4 undif1 F = F
5 3 4 sseqtrri F F
6 simp2 X × Fun F dom F X Fun F
7 6 funfnd X × Fun F dom F X F Fn dom F
8 elinel2 X × X ×
9 1st2nd2 X × X = 1 st X 2 nd X
10 8 9 syl X × X = 1 st X 2 nd X
11 10 3ad2ant1 X × Fun F dom F X X = 1 st X 2 nd X
12 11 fveq2d X × Fun F dom F X X = 1 st X 2 nd X
13 df-ov 1 st X 2 nd X = 1 st X 2 nd X
14 fzfi 1 st X 2 nd X Fin
15 13 14 eqeltrri 1 st X 2 nd X Fin
16 12 15 eqeltrdi X × Fun F dom F X X Fin
17 difss F F
18 dmss F F dom F dom F
19 17 18 ax-mp dom F dom F
20 simp3 X × Fun F dom F X dom F X
21 19 20 sstrid X × Fun F dom F X dom F X
22 16 21 ssfid X × Fun F dom F X dom F Fin
23 fnfi F Fn dom F dom F Fin F Fin
24 7 22 23 syl2anc X × Fun F dom F X F Fin
25 p0ex V
26 unexg F Fin V F V
27 24 25 26 sylancl X × Fun F dom F X F V
28 ssexg F F F V F V
29 5 27 28 sylancr X × Fun F dom F X F V
30 elex X × X V
31 30 3ad2ant1 X × Fun F dom F X X V
32 29 31 jca X × Fun F dom F X F V X V
33 simpr f = F x = X x = X
34 33 eleq1d f = F x = X x × X ×
35 simpl f = F x = X f = F
36 35 difeq1d f = F x = X f = F
37 36 funeqd f = F x = X Fun f Fun F
38 35 dmeqd f = F x = X dom f = dom F
39 33 fveq2d f = F x = X x = X
40 38 39 sseq12d f = F x = X dom f x dom F X
41 34 37 40 3anbi123d f = F x = X x × Fun f dom f x X × Fun F dom F X
42 df-struct Struct = f x | x × Fun f dom f x
43 41 42 brabga F V X V F Struct X X × Fun F dom F X
44 2 32 43 pm5.21nii F Struct X X × Fun F dom F X