Metamath Proof Explorer


Theorem issubassa

Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses issubassa.s S = W 𝑠 A
issubassa.l L = LSubSp W
issubassa.v V = Base W
issubassa.o 1 ˙ = 1 W
Assertion issubassa W AssAlg 1 ˙ A A V S AssAlg A SubRing W A L

Proof

Step Hyp Ref Expression
1 issubassa.s S = W 𝑠 A
2 issubassa.l L = LSubSp W
3 issubassa.v V = Base W
4 issubassa.o 1 ˙ = 1 W
5 simpl1 W AssAlg 1 ˙ A A V S AssAlg W AssAlg
6 assaring W AssAlg W Ring
7 5 6 syl W AssAlg 1 ˙ A A V S AssAlg W Ring
8 assaring S AssAlg S Ring
9 8 adantl W AssAlg 1 ˙ A A V S AssAlg S Ring
10 1 9 eqeltrrid W AssAlg 1 ˙ A A V S AssAlg W 𝑠 A Ring
11 simpl3 W AssAlg 1 ˙ A A V S AssAlg A V
12 simpl2 W AssAlg 1 ˙ A A V S AssAlg 1 ˙ A
13 11 12 jca W AssAlg 1 ˙ A A V S AssAlg A V 1 ˙ A
14 3 4 issubrg A SubRing W W Ring W 𝑠 A Ring A V 1 ˙ A
15 7 10 13 14 syl21anbrc W AssAlg 1 ˙ A A V S AssAlg A SubRing W
16 assalmod S AssAlg S LMod
17 16 adantl W AssAlg 1 ˙ A A V S AssAlg S LMod
18 assalmod W AssAlg W LMod
19 1 3 2 islss3 W LMod A L A V S LMod
20 5 18 19 3syl W AssAlg 1 ˙ A A V S AssAlg A L A V S LMod
21 11 17 20 mpbir2and W AssAlg 1 ˙ A A V S AssAlg A L
22 15 21 jca W AssAlg 1 ˙ A A V S AssAlg A SubRing W A L
23 1 2 issubassa3 W AssAlg A SubRing W A L S AssAlg
24 23 3ad2antl1 W AssAlg 1 ˙ A A V A SubRing W A L S AssAlg
25 22 24 impbida W AssAlg 1 ˙ A A V S AssAlg A SubRing W A L