Metamath Proof Explorer


Theorem issubassa2

Description: A subring of a unital algebra is a subspace and thus a subalgebra iff it contains all scalar multiples of the identity. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses issubassa2.a A = algSc W
issubassa2.l L = LSubSp W
Assertion issubassa2 W AssAlg S SubRing W S L ran A S

Proof

Step Hyp Ref Expression
1 issubassa2.a A = algSc W
2 issubassa2.l L = LSubSp W
3 eqid 1 W = 1 W
4 eqid LSpan W = LSpan W
5 1 3 4 rnascl W AssAlg ran A = LSpan W 1 W
6 5 ad2antrr W AssAlg S SubRing W S L ran A = LSpan W 1 W
7 assalmod W AssAlg W LMod
8 7 ad2antrr W AssAlg S SubRing W S L W LMod
9 simpr W AssAlg S SubRing W S L S L
10 3 subrg1cl S SubRing W 1 W S
11 10 ad2antlr W AssAlg S SubRing W S L 1 W S
12 2 4 8 9 11 lspsnel5a W AssAlg S SubRing W S L LSpan W 1 W S
13 6 12 eqsstrd W AssAlg S SubRing W S L ran A S
14 subrgsubg S SubRing W S SubGrp W
15 14 ad2antlr W AssAlg S SubRing W ran A S S SubGrp W
16 simplll W AssAlg S SubRing W ran A S x Base Scalar W y S W AssAlg
17 simprl W AssAlg S SubRing W ran A S x Base Scalar W y S x Base Scalar W
18 eqid Base W = Base W
19 18 subrgss S SubRing W S Base W
20 19 ad2antlr W AssAlg S SubRing W ran A S S Base W
21 20 sselda W AssAlg S SubRing W ran A S y S y Base W
22 21 adantrl W AssAlg S SubRing W ran A S x Base Scalar W y S y Base W
23 eqid Scalar W = Scalar W
24 eqid Base Scalar W = Base Scalar W
25 eqid W = W
26 eqid W = W
27 1 23 24 18 25 26 asclmul1 W AssAlg x Base Scalar W y Base W A x W y = x W y
28 16 17 22 27 syl3anc W AssAlg S SubRing W ran A S x Base Scalar W y S A x W y = x W y
29 simpllr W AssAlg S SubRing W ran A S x Base Scalar W y S S SubRing W
30 simplr W AssAlg S SubRing W ran A S x Base Scalar W ran A S
31 1 23 24 asclfn A Fn Base Scalar W
32 31 a1i W AssAlg S SubRing W ran A S A Fn Base Scalar W
33 fnfvelrn A Fn Base Scalar W x Base Scalar W A x ran A
34 32 33 sylan W AssAlg S SubRing W ran A S x Base Scalar W A x ran A
35 30 34 sseldd W AssAlg S SubRing W ran A S x Base Scalar W A x S
36 35 adantrr W AssAlg S SubRing W ran A S x Base Scalar W y S A x S
37 simprr W AssAlg S SubRing W ran A S x Base Scalar W y S y S
38 25 subrgmcl S SubRing W A x S y S A x W y S
39 29 36 37 38 syl3anc W AssAlg S SubRing W ran A S x Base Scalar W y S A x W y S
40 28 39 eqeltrrd W AssAlg S SubRing W ran A S x Base Scalar W y S x W y S
41 40 ralrimivva W AssAlg S SubRing W ran A S x Base Scalar W y S x W y S
42 23 24 18 26 2 islss4 W LMod S L S SubGrp W x Base Scalar W y S x W y S
43 7 42 syl W AssAlg S L S SubGrp W x Base Scalar W y S x W y S
44 43 ad2antrr W AssAlg S SubRing W ran A S S L S SubGrp W x Base Scalar W y S x W y S
45 15 41 44 mpbir2and W AssAlg S SubRing W ran A S S L
46 13 45 impbida W AssAlg S SubRing W S L ran A S