Metamath Proof Explorer


Theorem issubassa3

Description: A subring that is also a subspace is a subalgebra. The key theorem is islss3 . (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses issubassa.s S = W 𝑠 A
issubassa.l L = LSubSp W
Assertion issubassa3 W AssAlg A SubRing W A L S AssAlg

Proof

Step Hyp Ref Expression
1 issubassa.s S = W 𝑠 A
2 issubassa.l L = LSubSp W
3 1 subrgbas A SubRing W A = Base S
4 3 ad2antrl W AssAlg A SubRing W A L A = Base S
5 eqid Scalar W = Scalar W
6 1 5 resssca A SubRing W Scalar W = Scalar S
7 6 ad2antrl W AssAlg A SubRing W A L Scalar W = Scalar S
8 eqidd W AssAlg A SubRing W A L Base Scalar W = Base Scalar W
9 eqid W = W
10 1 9 ressvsca A SubRing W W = S
11 10 ad2antrl W AssAlg A SubRing W A L W = S
12 eqid W = W
13 1 12 ressmulr A SubRing W W = S
14 13 ad2antrl W AssAlg A SubRing W A L W = S
15 assalmod W AssAlg W LMod
16 simpr A SubRing W A L A L
17 1 2 lsslmod W LMod A L S LMod
18 15 16 17 syl2an W AssAlg A SubRing W A L S LMod
19 1 subrgring A SubRing W S Ring
20 19 ad2antrl W AssAlg A SubRing W A L S Ring
21 5 assasca W AssAlg Scalar W CRing
22 21 adantr W AssAlg A SubRing W A L Scalar W CRing
23 idd W AssAlg A SubRing W A L x Base Scalar W x Base Scalar W
24 eqid Base W = Base W
25 24 subrgss A SubRing W A Base W
26 25 ad2antrl W AssAlg A SubRing W A L A Base W
27 26 sseld W AssAlg A SubRing W A L y A y Base W
28 26 sseld W AssAlg A SubRing W A L z A z Base W
29 23 27 28 3anim123d W AssAlg A SubRing W A L x Base Scalar W y A z A x Base Scalar W y Base W z Base W
30 29 imp W AssAlg A SubRing W A L x Base Scalar W y A z A x Base Scalar W y Base W z Base W
31 eqid Base Scalar W = Base Scalar W
32 24 5 31 9 12 assaass W AssAlg x Base Scalar W y Base W z Base W x W y W z = x W y W z
33 32 adantlr W AssAlg A SubRing W A L x Base Scalar W y Base W z Base W x W y W z = x W y W z
34 30 33 syldan W AssAlg A SubRing W A L x Base Scalar W y A z A x W y W z = x W y W z
35 24 5 31 9 12 assaassr W AssAlg x Base Scalar W y Base W z Base W y W x W z = x W y W z
36 35 adantlr W AssAlg A SubRing W A L x Base Scalar W y Base W z Base W y W x W z = x W y W z
37 30 36 syldan W AssAlg A SubRing W A L x Base Scalar W y A z A y W x W z = x W y W z
38 4 7 8 11 14 18 20 22 34 37 isassad W AssAlg A SubRing W A L S AssAlg