| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubc.h |
|
| 2 |
|
issubc.i |
|
| 3 |
|
issubc.o |
|
| 4 |
|
issubc.c |
|
| 5 |
|
issubc.s |
|
| 6 |
|
simpl |
|
| 7 |
|
sscpwex |
|
| 8 |
|
simpl |
|
| 9 |
8
|
ss2abi |
|
| 10 |
7 9
|
ssexi |
|
| 11 |
10
|
csbex |
|
| 12 |
11
|
a1i |
|
| 13 |
|
df-subc |
|
| 14 |
13
|
fvmpts |
|
| 15 |
6 12 14
|
syl2anc |
|
| 16 |
15
|
eleq2d |
|
| 17 |
|
sbcel2 |
|
| 18 |
17
|
a1i |
|
| 19 |
|
elex |
|
| 20 |
19
|
a1i |
|
| 21 |
|
sscrel |
|
| 22 |
21
|
brrelex1i |
|
| 23 |
22
|
adantr |
|
| 24 |
23
|
a1i |
|
| 25 |
|
df-sbc |
|
| 26 |
|
simpr |
|
| 27 |
|
simpr |
|
| 28 |
|
simpr |
|
| 29 |
28
|
fveq2d |
|
| 30 |
29 1
|
eqtr4di |
|
| 31 |
30
|
adantr |
|
| 32 |
27 31
|
breq12d |
|
| 33 |
|
vex |
|
| 34 |
33
|
dmex |
|
| 35 |
34
|
dmex |
|
| 36 |
35
|
a1i |
|
| 37 |
27
|
dmeqd |
|
| 38 |
37
|
dmeqd |
|
| 39 |
|
simpllr |
|
| 40 |
38 39
|
eqtr4d |
|
| 41 |
|
simpr |
|
| 42 |
|
simpllr |
|
| 43 |
42
|
fveq2d |
|
| 44 |
43 2
|
eqtr4di |
|
| 45 |
44
|
fveq1d |
|
| 46 |
|
simplr |
|
| 47 |
46
|
oveqd |
|
| 48 |
45 47
|
eleq12d |
|
| 49 |
46
|
oveqd |
|
| 50 |
46
|
oveqd |
|
| 51 |
42
|
fveq2d |
|
| 52 |
51 3
|
eqtr4di |
|
| 53 |
52
|
oveqd |
|
| 54 |
53
|
oveqd |
|
| 55 |
46
|
oveqd |
|
| 56 |
54 55
|
eleq12d |
|
| 57 |
50 56
|
raleqbidv |
|
| 58 |
49 57
|
raleqbidv |
|
| 59 |
41 58
|
raleqbidv |
|
| 60 |
41 59
|
raleqbidv |
|
| 61 |
48 60
|
anbi12d |
|
| 62 |
41 61
|
raleqbidv |
|
| 63 |
36 40 62
|
sbcied2 |
|
| 64 |
32 63
|
anbi12d |
|
| 65 |
64
|
adantlr |
|
| 66 |
26 65
|
sbcied |
|
| 67 |
25 66
|
bitr3id |
|
| 68 |
67
|
ex |
|
| 69 |
20 24 68
|
pm5.21ndd |
|
| 70 |
6 69
|
sbcied |
|
| 71 |
16 18 70
|
3bitr2d |
|
| 72 |
4 5 71
|
syl2anc |
|