Step |
Hyp |
Ref |
Expression |
1 |
|
issubc.h |
|
2 |
|
issubc.i |
|
3 |
|
issubc.o |
|
4 |
|
issubc.c |
|
5 |
|
issubc.s |
|
6 |
|
simpl |
|
7 |
|
sscpwex |
|
8 |
|
simpl |
|
9 |
8
|
ss2abi |
|
10 |
7 9
|
ssexi |
|
11 |
10
|
csbex |
|
12 |
11
|
a1i |
|
13 |
|
df-subc |
|
14 |
13
|
fvmpts |
|
15 |
6 12 14
|
syl2anc |
|
16 |
15
|
eleq2d |
|
17 |
|
sbcel2 |
|
18 |
17
|
a1i |
|
19 |
|
elex |
|
20 |
19
|
a1i |
|
21 |
|
sscrel |
|
22 |
21
|
brrelex1i |
|
23 |
22
|
adantr |
|
24 |
23
|
a1i |
|
25 |
|
df-sbc |
|
26 |
|
simpr |
|
27 |
|
simpr |
|
28 |
|
simpr |
|
29 |
28
|
fveq2d |
|
30 |
29 1
|
eqtr4di |
|
31 |
30
|
adantr |
|
32 |
27 31
|
breq12d |
|
33 |
|
vex |
|
34 |
33
|
dmex |
|
35 |
34
|
dmex |
|
36 |
35
|
a1i |
|
37 |
27
|
dmeqd |
|
38 |
37
|
dmeqd |
|
39 |
|
simpllr |
|
40 |
38 39
|
eqtr4d |
|
41 |
|
simpr |
|
42 |
|
simpllr |
|
43 |
42
|
fveq2d |
|
44 |
43 2
|
eqtr4di |
|
45 |
44
|
fveq1d |
|
46 |
|
simplr |
|
47 |
46
|
oveqd |
|
48 |
45 47
|
eleq12d |
|
49 |
46
|
oveqd |
|
50 |
46
|
oveqd |
|
51 |
42
|
fveq2d |
|
52 |
51 3
|
eqtr4di |
|
53 |
52
|
oveqd |
|
54 |
53
|
oveqd |
|
55 |
46
|
oveqd |
|
56 |
54 55
|
eleq12d |
|
57 |
50 56
|
raleqbidv |
|
58 |
49 57
|
raleqbidv |
|
59 |
41 58
|
raleqbidv |
|
60 |
41 59
|
raleqbidv |
|
61 |
48 60
|
anbi12d |
|
62 |
41 61
|
raleqbidv |
|
63 |
36 40 62
|
sbcied2 |
|
64 |
32 63
|
anbi12d |
|
65 |
64
|
adantlr |
|
66 |
26 65
|
sbcied |
|
67 |
25 66
|
bitr3id |
|
68 |
67
|
ex |
|
69 |
20 24 68
|
pm5.21ndd |
|
70 |
6 69
|
sbcied |
|
71 |
16 18 70
|
3bitr2d |
|
72 |
4 5 71
|
syl2anc |
|