Database
BASIC CATEGORY THEORY
Categories
Subcategories
issubc2
Next ⟩
0ssc
Metamath Proof Explorer
Ascii
Unicode
Theorem
issubc2
Description:
Elementhood in the set of subcategories.
(Contributed by
Mario Carneiro
, 4-Jan-2017)
Ref
Expression
Hypotheses
issubc.h
⊢
H
=
Hom
𝑓
⁡
C
issubc.i
⊢
1
˙
=
Id
⁡
C
issubc.o
⊢
·
˙
=
comp
⁡
C
issubc.c
⊢
φ
→
C
∈
Cat
issubc2.a
⊢
φ
→
J
Fn
S
×
S
Assertion
issubc2
⊢
φ
→
J
∈
Subcat
⁡
C
↔
J
⊆
cat
H
∧
∀
x
∈
S
1
˙
⁡
x
∈
x
J
x
∧
∀
y
∈
S
∀
z
∈
S
∀
f
∈
x
J
y
∀
g
∈
y
J
z
g
x
y
·
˙
z
f
∈
x
J
z
Proof
Step
Hyp
Ref
Expression
1
issubc.h
⊢
H
=
Hom
𝑓
⁡
C
2
issubc.i
⊢
1
˙
=
Id
⁡
C
3
issubc.o
⊢
·
˙
=
comp
⁡
C
4
issubc.c
⊢
φ
→
C
∈
Cat
5
issubc2.a
⊢
φ
→
J
Fn
S
×
S
6
5
fndmd
⊢
φ
→
dom
⁡
J
=
S
×
S
7
6
dmeqd
⊢
φ
→
dom
⁡
dom
⁡
J
=
dom
⁡
S
×
S
8
dmxpid
⊢
dom
⁡
S
×
S
=
S
9
7
8
eqtr2di
⊢
φ
→
S
=
dom
⁡
dom
⁡
J
10
1
2
3
4
9
issubc
⊢
φ
→
J
∈
Subcat
⁡
C
↔
J
⊆
cat
H
∧
∀
x
∈
S
1
˙
⁡
x
∈
x
J
x
∧
∀
y
∈
S
∀
z
∈
S
∀
f
∈
x
J
y
∀
g
∈
y
J
z
g
x
y
·
˙
z
f
∈
x
J
z