Metamath Proof Explorer


Theorem issubc2

Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses issubc.h H = Hom 𝑓 C
issubc.i 1 ˙ = Id C
issubc.o · ˙ = comp C
issubc.c φ C Cat
issubc2.a φ J Fn S × S
Assertion issubc2 φ J Subcat C J cat H x S 1 ˙ x x J x y S z S f x J y g y J z g x y · ˙ z f x J z

Proof

Step Hyp Ref Expression
1 issubc.h H = Hom 𝑓 C
2 issubc.i 1 ˙ = Id C
3 issubc.o · ˙ = comp C
4 issubc.c φ C Cat
5 issubc2.a φ J Fn S × S
6 5 fndmd φ dom J = S × S
7 6 dmeqd φ dom dom J = dom S × S
8 dmxpid dom S × S = S
9 7 8 eqtr2di φ S = dom dom J
10 1 2 3 4 9 issubc φ J Subcat C J cat H x S 1 ˙ x x J x y S z S f x J y g y J z g x y · ˙ z f x J z