Step |
Hyp |
Ref |
Expression |
1 |
|
issubc3.h |
|
2 |
|
issubc3.i |
|
3 |
|
issubc3.1 |
|
4 |
|
issubc3.c |
|
5 |
|
issubc3.a |
|
6 |
|
simpr |
|
7 |
6 1
|
subcssc |
|
8 |
6
|
adantr |
|
9 |
5
|
ad2antrr |
|
10 |
|
simpr |
|
11 |
8 9 10 2
|
subcidcl |
|
12 |
11
|
ralrimiva |
|
13 |
3 6
|
subccat |
|
14 |
7 12 13
|
3jca |
|
15 |
|
simpr1 |
|
16 |
|
simpr2 |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
simplrr |
|
21 |
|
simprl1 |
|
22 |
|
eqid |
|
23 |
4
|
ad2antrr |
|
24 |
5
|
ad2antrr |
|
25 |
1 22
|
homffn |
|
26 |
25
|
a1i |
|
27 |
|
simplrl |
|
28 |
24 26 27
|
ssc1 |
|
29 |
3 22 23 24 28
|
rescbas |
|
30 |
21 29
|
eleqtrd |
|
31 |
|
simprl2 |
|
32 |
31 29
|
eleqtrd |
|
33 |
|
simprl3 |
|
34 |
33 29
|
eleqtrd |
|
35 |
|
simprrl |
|
36 |
3 22 23 24 28
|
reschom |
|
37 |
36
|
oveqd |
|
38 |
35 37
|
eleqtrd |
|
39 |
|
simprrr |
|
40 |
36
|
oveqd |
|
41 |
39 40
|
eleqtrd |
|
42 |
17 18 19 20 30 32 34 38 41
|
catcocl |
|
43 |
|
eqid |
|
44 |
3 22 23 24 28 43
|
rescco |
|
45 |
44
|
oveqd |
|
46 |
45
|
oveqd |
|
47 |
36
|
oveqd |
|
48 |
42 46 47
|
3eltr4d |
|
49 |
48
|
anassrs |
|
50 |
49
|
ralrimivva |
|
51 |
50
|
ralrimivvva |
|
52 |
51
|
3adantr2 |
|
53 |
|
r19.26 |
|
54 |
16 52 53
|
sylanbrc |
|
55 |
4
|
adantr |
|
56 |
5
|
adantr |
|
57 |
1 2 43 55 56
|
issubc2 |
|
58 |
15 54 57
|
mpbir2and |
|
59 |
14 58
|
impbida |
|