| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubc3.h |
|
| 2 |
|
issubc3.i |
|
| 3 |
|
issubc3.1 |
|
| 4 |
|
issubc3.c |
|
| 5 |
|
issubc3.a |
|
| 6 |
|
simpr |
|
| 7 |
6 1
|
subcssc |
|
| 8 |
6
|
adantr |
|
| 9 |
5
|
ad2antrr |
|
| 10 |
|
simpr |
|
| 11 |
8 9 10 2
|
subcidcl |
|
| 12 |
11
|
ralrimiva |
|
| 13 |
3 6
|
subccat |
|
| 14 |
7 12 13
|
3jca |
|
| 15 |
|
simpr1 |
|
| 16 |
|
simpr2 |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
|
simplrr |
|
| 21 |
|
simprl1 |
|
| 22 |
|
eqid |
|
| 23 |
4
|
ad2antrr |
|
| 24 |
5
|
ad2antrr |
|
| 25 |
1 22
|
homffn |
|
| 26 |
25
|
a1i |
|
| 27 |
|
simplrl |
|
| 28 |
24 26 27
|
ssc1 |
|
| 29 |
3 22 23 24 28
|
rescbas |
|
| 30 |
21 29
|
eleqtrd |
|
| 31 |
|
simprl2 |
|
| 32 |
31 29
|
eleqtrd |
|
| 33 |
|
simprl3 |
|
| 34 |
33 29
|
eleqtrd |
|
| 35 |
|
simprrl |
|
| 36 |
3 22 23 24 28
|
reschom |
|
| 37 |
36
|
oveqd |
|
| 38 |
35 37
|
eleqtrd |
|
| 39 |
|
simprrr |
|
| 40 |
36
|
oveqd |
|
| 41 |
39 40
|
eleqtrd |
|
| 42 |
17 18 19 20 30 32 34 38 41
|
catcocl |
|
| 43 |
|
eqid |
|
| 44 |
3 22 23 24 28 43
|
rescco |
|
| 45 |
44
|
oveqd |
|
| 46 |
45
|
oveqd |
|
| 47 |
36
|
oveqd |
|
| 48 |
42 46 47
|
3eltr4d |
|
| 49 |
48
|
anassrs |
|
| 50 |
49
|
ralrimivva |
|
| 51 |
50
|
ralrimivvva |
|
| 52 |
51
|
3adantr2 |
|
| 53 |
|
r19.26 |
|
| 54 |
16 52 53
|
sylanbrc |
|
| 55 |
4
|
adantr |
|
| 56 |
5
|
adantr |
|
| 57 |
1 2 43 55 56
|
issubc2 |
|
| 58 |
15 54 57
|
mpbir2and |
|
| 59 |
14 58
|
impbida |
|