Step |
Hyp |
Ref |
Expression |
1 |
|
issubdrg.s |
|
2 |
|
issubdrg.z |
|
3 |
|
issubdrg.i |
|
4 |
|
simpllr |
|
5 |
1
|
subrgring |
|
6 |
4 5
|
syl |
|
7 |
|
simpr |
|
8 |
|
eldifsn |
|
9 |
7 8
|
sylib |
|
10 |
9
|
simpld |
|
11 |
1
|
subrgbas |
|
12 |
4 11
|
syl |
|
13 |
10 12
|
eleqtrd |
|
14 |
9
|
simprd |
|
15 |
1 2
|
subrg0 |
|
16 |
4 15
|
syl |
|
17 |
14 16
|
neeqtrd |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
18 19 20
|
drngunit |
|
22 |
21
|
ad2antlr |
|
23 |
13 17 22
|
mpbir2and |
|
24 |
|
eqid |
|
25 |
19 24 18
|
ringinvcl |
|
26 |
6 23 25
|
syl2anc |
|
27 |
1 3 19 24
|
subrginv |
|
28 |
4 23 27
|
syl2anc |
|
29 |
26 28 12
|
3eltr4d |
|
30 |
29
|
ralrimiva |
|
31 |
5
|
ad2antlr |
|
32 |
|
eqid |
|
33 |
1 32 19
|
subrguss |
|
34 |
33
|
ad2antlr |
|
35 |
|
eqid |
|
36 |
35 32 2
|
isdrng |
|
37 |
36
|
simprbi |
|
38 |
37
|
ad2antrr |
|
39 |
34 38
|
sseqtrd |
|
40 |
18 19
|
unitss |
|
41 |
11
|
ad2antlr |
|
42 |
40 41
|
sseqtrrid |
|
43 |
39 42
|
ssind |
|
44 |
35
|
subrgss |
|
45 |
44
|
ad2antlr |
|
46 |
|
difin2 |
|
47 |
45 46
|
syl |
|
48 |
43 47
|
sseqtrrd |
|
49 |
44
|
ad2antlr |
|
50 |
|
simprl |
|
51 |
50 8
|
sylib |
|
52 |
51
|
simpld |
|
53 |
49 52
|
sseldd |
|
54 |
51
|
simprd |
|
55 |
35 32 2
|
drngunit |
|
56 |
55
|
ad2antrr |
|
57 |
53 54 56
|
mpbir2and |
|
58 |
|
simprr |
|
59 |
1 32 19 3
|
subrgunit |
|
60 |
59
|
ad2antlr |
|
61 |
57 52 58 60
|
mpbir3and |
|
62 |
61
|
expr |
|
63 |
62
|
ralimdva |
|
64 |
63
|
imp |
|
65 |
|
dfss3 |
|
66 |
64 65
|
sylibr |
|
67 |
48 66
|
eqssd |
|
68 |
15
|
ad2antlr |
|
69 |
68
|
sneqd |
|
70 |
41 69
|
difeq12d |
|
71 |
67 70
|
eqtrd |
|
72 |
18 19 20
|
isdrng |
|
73 |
31 71 72
|
sylanbrc |
|
74 |
30 73
|
impbida |
|