Metamath Proof Explorer


Theorem issubdrg

Description: Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014)

Ref Expression
Hypotheses issubdrg.s S = R 𝑠 A
issubdrg.z 0 ˙ = 0 R
issubdrg.i I = inv r R
Assertion issubdrg R DivRing A SubRing R S DivRing x A 0 ˙ I x A

Proof

Step Hyp Ref Expression
1 issubdrg.s S = R 𝑠 A
2 issubdrg.z 0 ˙ = 0 R
3 issubdrg.i I = inv r R
4 simpllr R DivRing A SubRing R S DivRing x A 0 ˙ A SubRing R
5 1 subrgring A SubRing R S Ring
6 4 5 syl R DivRing A SubRing R S DivRing x A 0 ˙ S Ring
7 simpr R DivRing A SubRing R S DivRing x A 0 ˙ x A 0 ˙
8 eldifsn x A 0 ˙ x A x 0 ˙
9 7 8 sylib R DivRing A SubRing R S DivRing x A 0 ˙ x A x 0 ˙
10 9 simpld R DivRing A SubRing R S DivRing x A 0 ˙ x A
11 1 subrgbas A SubRing R A = Base S
12 4 11 syl R DivRing A SubRing R S DivRing x A 0 ˙ A = Base S
13 10 12 eleqtrd R DivRing A SubRing R S DivRing x A 0 ˙ x Base S
14 9 simprd R DivRing A SubRing R S DivRing x A 0 ˙ x 0 ˙
15 1 2 subrg0 A SubRing R 0 ˙ = 0 S
16 4 15 syl R DivRing A SubRing R S DivRing x A 0 ˙ 0 ˙ = 0 S
17 14 16 neeqtrd R DivRing A SubRing R S DivRing x A 0 ˙ x 0 S
18 eqid Base S = Base S
19 eqid Unit S = Unit S
20 eqid 0 S = 0 S
21 18 19 20 drngunit S DivRing x Unit S x Base S x 0 S
22 21 ad2antlr R DivRing A SubRing R S DivRing x A 0 ˙ x Unit S x Base S x 0 S
23 13 17 22 mpbir2and R DivRing A SubRing R S DivRing x A 0 ˙ x Unit S
24 eqid inv r S = inv r S
25 19 24 18 ringinvcl S Ring x Unit S inv r S x Base S
26 6 23 25 syl2anc R DivRing A SubRing R S DivRing x A 0 ˙ inv r S x Base S
27 1 3 19 24 subrginv A SubRing R x Unit S I x = inv r S x
28 4 23 27 syl2anc R DivRing A SubRing R S DivRing x A 0 ˙ I x = inv r S x
29 26 28 12 3eltr4d R DivRing A SubRing R S DivRing x A 0 ˙ I x A
30 29 ralrimiva R DivRing A SubRing R S DivRing x A 0 ˙ I x A
31 5 ad2antlr R DivRing A SubRing R x A 0 ˙ I x A S Ring
32 eqid Unit R = Unit R
33 1 32 19 subrguss A SubRing R Unit S Unit R
34 33 ad2antlr R DivRing A SubRing R x A 0 ˙ I x A Unit S Unit R
35 eqid Base R = Base R
36 35 32 2 isdrng R DivRing R Ring Unit R = Base R 0 ˙
37 36 simprbi R DivRing Unit R = Base R 0 ˙
38 37 ad2antrr R DivRing A SubRing R x A 0 ˙ I x A Unit R = Base R 0 ˙
39 34 38 sseqtrd R DivRing A SubRing R x A 0 ˙ I x A Unit S Base R 0 ˙
40 18 19 unitss Unit S Base S
41 11 ad2antlr R DivRing A SubRing R x A 0 ˙ I x A A = Base S
42 40 41 sseqtrrid R DivRing A SubRing R x A 0 ˙ I x A Unit S A
43 39 42 ssind R DivRing A SubRing R x A 0 ˙ I x A Unit S Base R 0 ˙ A
44 35 subrgss A SubRing R A Base R
45 44 ad2antlr R DivRing A SubRing R x A 0 ˙ I x A A Base R
46 difin2 A Base R A 0 ˙ = Base R 0 ˙ A
47 45 46 syl R DivRing A SubRing R x A 0 ˙ I x A A 0 ˙ = Base R 0 ˙ A
48 43 47 sseqtrrd R DivRing A SubRing R x A 0 ˙ I x A Unit S A 0 ˙
49 44 ad2antlr R DivRing A SubRing R x A 0 ˙ I x A A Base R
50 simprl R DivRing A SubRing R x A 0 ˙ I x A x A 0 ˙
51 50 8 sylib R DivRing A SubRing R x A 0 ˙ I x A x A x 0 ˙
52 51 simpld R DivRing A SubRing R x A 0 ˙ I x A x A
53 49 52 sseldd R DivRing A SubRing R x A 0 ˙ I x A x Base R
54 51 simprd R DivRing A SubRing R x A 0 ˙ I x A x 0 ˙
55 35 32 2 drngunit R DivRing x Unit R x Base R x 0 ˙
56 55 ad2antrr R DivRing A SubRing R x A 0 ˙ I x A x Unit R x Base R x 0 ˙
57 53 54 56 mpbir2and R DivRing A SubRing R x A 0 ˙ I x A x Unit R
58 simprr R DivRing A SubRing R x A 0 ˙ I x A I x A
59 1 32 19 3 subrgunit A SubRing R x Unit S x Unit R x A I x A
60 59 ad2antlr R DivRing A SubRing R x A 0 ˙ I x A x Unit S x Unit R x A I x A
61 57 52 58 60 mpbir3and R DivRing A SubRing R x A 0 ˙ I x A x Unit S
62 61 expr R DivRing A SubRing R x A 0 ˙ I x A x Unit S
63 62 ralimdva R DivRing A SubRing R x A 0 ˙ I x A x A 0 ˙ x Unit S
64 63 imp R DivRing A SubRing R x A 0 ˙ I x A x A 0 ˙ x Unit S
65 dfss3 A 0 ˙ Unit S x A 0 ˙ x Unit S
66 64 65 sylibr R DivRing A SubRing R x A 0 ˙ I x A A 0 ˙ Unit S
67 48 66 eqssd R DivRing A SubRing R x A 0 ˙ I x A Unit S = A 0 ˙
68 15 ad2antlr R DivRing A SubRing R x A 0 ˙ I x A 0 ˙ = 0 S
69 68 sneqd R DivRing A SubRing R x A 0 ˙ I x A 0 ˙ = 0 S
70 41 69 difeq12d R DivRing A SubRing R x A 0 ˙ I x A A 0 ˙ = Base S 0 S
71 67 70 eqtrd R DivRing A SubRing R x A 0 ˙ I x A Unit S = Base S 0 S
72 18 19 20 isdrng S DivRing S Ring Unit S = Base S 0 S
73 31 71 72 sylanbrc R DivRing A SubRing R x A 0 ˙ I x A S DivRing
74 30 73 impbida R DivRing A SubRing R S DivRing x A 0 ˙ I x A