Metamath Proof Explorer


Theorem issubg

Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis issubg.b B = Base G
Assertion issubg S SubGrp G G Grp S B G 𝑠 S Grp

Proof

Step Hyp Ref Expression
1 issubg.b B = Base G
2 df-subg SubGrp = w Grp s 𝒫 Base w | w 𝑠 s Grp
3 2 mptrcl S SubGrp G G Grp
4 simp1 G Grp S B G 𝑠 S Grp G Grp
5 fveq2 w = G Base w = Base G
6 5 1 eqtr4di w = G Base w = B
7 6 pweqd w = G 𝒫 Base w = 𝒫 B
8 oveq1 w = G w 𝑠 s = G 𝑠 s
9 8 eleq1d w = G w 𝑠 s Grp G 𝑠 s Grp
10 7 9 rabeqbidv w = G s 𝒫 Base w | w 𝑠 s Grp = s 𝒫 B | G 𝑠 s Grp
11 1 fvexi B V
12 11 pwex 𝒫 B V
13 12 rabex s 𝒫 B | G 𝑠 s Grp V
14 10 2 13 fvmpt G Grp SubGrp G = s 𝒫 B | G 𝑠 s Grp
15 14 eleq2d G Grp S SubGrp G S s 𝒫 B | G 𝑠 s Grp
16 oveq2 s = S G 𝑠 s = G 𝑠 S
17 16 eleq1d s = S G 𝑠 s Grp G 𝑠 S Grp
18 17 elrab S s 𝒫 B | G 𝑠 s Grp S 𝒫 B G 𝑠 S Grp
19 11 elpw2 S 𝒫 B S B
20 19 anbi1i S 𝒫 B G 𝑠 S Grp S B G 𝑠 S Grp
21 18 20 bitri S s 𝒫 B | G 𝑠 s Grp S B G 𝑠 S Grp
22 15 21 bitrdi G Grp S SubGrp G S B G 𝑠 S Grp
23 ibar G Grp S B G 𝑠 S Grp G Grp S B G 𝑠 S Grp
24 22 23 bitrd G Grp S SubGrp G G Grp S B G 𝑠 S Grp
25 3anass G Grp S B G 𝑠 S Grp G Grp S B G 𝑠 S Grp
26 24 25 bitr4di G Grp S SubGrp G G Grp S B G 𝑠 S Grp
27 3 4 26 pm5.21nii S SubGrp G G Grp S B G 𝑠 S Grp