Step |
Hyp |
Ref |
Expression |
1 |
|
issubg2.b |
|
2 |
|
issubg2.p |
|
3 |
|
issubg2.i |
|
4 |
1
|
subgss |
|
5 |
|
eqid |
|
6 |
5
|
subgbas |
|
7 |
5
|
subggrp |
|
8 |
|
eqid |
|
9 |
8
|
grpbn0 |
|
10 |
7 9
|
syl |
|
11 |
6 10
|
eqnetrd |
|
12 |
2
|
subgcl |
|
13 |
12
|
3expa |
|
14 |
13
|
ralrimiva |
|
15 |
3
|
subginvcl |
|
16 |
14 15
|
jca |
|
17 |
16
|
ralrimiva |
|
18 |
4 11 17
|
3jca |
|
19 |
|
simpl |
|
20 |
|
simpr1 |
|
21 |
5 1
|
ressbas2 |
|
22 |
20 21
|
syl |
|
23 |
|
fvex |
|
24 |
22 23
|
eqeltrdi |
|
25 |
5 2
|
ressplusg |
|
26 |
24 25
|
syl |
|
27 |
|
simpr3 |
|
28 |
|
simpl |
|
29 |
28
|
ralimi |
|
30 |
27 29
|
syl |
|
31 |
|
oveq1 |
|
32 |
31
|
eleq1d |
|
33 |
|
oveq2 |
|
34 |
33
|
eleq1d |
|
35 |
32 34
|
rspc2v |
|
36 |
30 35
|
syl5com |
|
37 |
36
|
3impib |
|
38 |
20
|
sseld |
|
39 |
20
|
sseld |
|
40 |
20
|
sseld |
|
41 |
38 39 40
|
3anim123d |
|
42 |
41
|
imp |
|
43 |
1 2
|
grpass |
|
44 |
43
|
adantlr |
|
45 |
42 44
|
syldan |
|
46 |
|
simpr2 |
|
47 |
|
n0 |
|
48 |
46 47
|
sylib |
|
49 |
20
|
sselda |
|
50 |
|
eqid |
|
51 |
1 2 50 3
|
grplinv |
|
52 |
51
|
adantlr |
|
53 |
49 52
|
syldan |
|
54 |
|
simpr |
|
55 |
54
|
ralimi |
|
56 |
27 55
|
syl |
|
57 |
|
fveq2 |
|
58 |
57
|
eleq1d |
|
59 |
58
|
rspccva |
|
60 |
56 59
|
sylan |
|
61 |
|
simpr |
|
62 |
30
|
adantr |
|
63 |
|
ovrspc2v |
|
64 |
60 61 62 63
|
syl21anc |
|
65 |
53 64
|
eqeltrrd |
|
66 |
48 65
|
exlimddv |
|
67 |
1 2 50
|
grplid |
|
68 |
67
|
adantlr |
|
69 |
49 68
|
syldan |
|
70 |
22 26 37 45 66 69 60 53
|
isgrpd |
|
71 |
1
|
issubg |
|
72 |
19 20 70 71
|
syl3anbrc |
|
73 |
72
|
ex |
|
74 |
18 73
|
impbid2 |
|