| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubg4.b |
|
| 2 |
|
issubg4.p |
|
| 3 |
1
|
subgss |
|
| 4 |
|
eqid |
|
| 5 |
4
|
subg0cl |
|
| 6 |
5
|
ne0d |
|
| 7 |
2
|
subgsubcl |
|
| 8 |
7
|
3expb |
|
| 9 |
8
|
ralrimivva |
|
| 10 |
3 6 9
|
3jca |
|
| 11 |
|
simplrl |
|
| 12 |
|
simplrr |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
eleq1d |
|
| 15 |
14
|
ralbidv |
|
| 16 |
|
simpr |
|
| 17 |
|
simprr |
|
| 18 |
|
r19.2z |
|
| 19 |
17 18
|
sylan |
|
| 20 |
|
oveq2 |
|
| 21 |
20
|
eleq1d |
|
| 22 |
21
|
rspcv |
|
| 23 |
22
|
adantl |
|
| 24 |
|
simprl |
|
| 25 |
24
|
sselda |
|
| 26 |
1 4 2
|
grpsubid |
|
| 27 |
26
|
adantlr |
|
| 28 |
25 27
|
syldan |
|
| 29 |
28
|
eleq1d |
|
| 30 |
23 29
|
sylibd |
|
| 31 |
30
|
rexlimdva |
|
| 32 |
31
|
imp |
|
| 33 |
19 32
|
syldan |
|
| 34 |
15 16 33
|
rspcdva |
|
| 35 |
1 4
|
grpidcl |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
24
|
sselda |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
1 38 39 2
|
grpsubval |
|
| 41 |
36 37 40
|
syl2anc |
|
| 42 |
|
simpll |
|
| 43 |
1 39
|
grpinvcl |
|
| 44 |
42 37 43
|
syl2anc |
|
| 45 |
1 38 4
|
grplid |
|
| 46 |
42 44 45
|
syl2anc |
|
| 47 |
41 46
|
eqtrd |
|
| 48 |
47
|
eleq1d |
|
| 49 |
48
|
ralbidva |
|
| 50 |
49
|
adantr |
|
| 51 |
34 50
|
mpbid |
|
| 52 |
|
fveq2 |
|
| 53 |
52
|
eleq1d |
|
| 54 |
53
|
rspccva |
|
| 55 |
54
|
ad2ant2l |
|
| 56 |
|
oveq2 |
|
| 57 |
56
|
eleq1d |
|
| 58 |
57
|
rspcv |
|
| 59 |
55 58
|
syl |
|
| 60 |
|
simplll |
|
| 61 |
|
simplrl |
|
| 62 |
61
|
adantr |
|
| 63 |
|
simprl |
|
| 64 |
62 63
|
sseldd |
|
| 65 |
|
simprr |
|
| 66 |
62 65
|
sseldd |
|
| 67 |
1 38 2 39 60 64 66
|
grpsubinv |
|
| 68 |
67
|
eleq1d |
|
| 69 |
59 68
|
sylibd |
|
| 70 |
69
|
anassrs |
|
| 71 |
70
|
ralrimdva |
|
| 72 |
71
|
ralimdva |
|
| 73 |
72
|
impancom |
|
| 74 |
51 73
|
mpd |
|
| 75 |
|
oveq1 |
|
| 76 |
75
|
eleq1d |
|
| 77 |
76
|
ralbidv |
|
| 78 |
77
|
cbvralvw |
|
| 79 |
74 78
|
sylib |
|
| 80 |
|
r19.26 |
|
| 81 |
79 51 80
|
sylanbrc |
|
| 82 |
11 12 81
|
3jca |
|
| 83 |
82
|
exp42 |
|
| 84 |
83
|
3impd |
|
| 85 |
1 38 39
|
issubg2 |
|
| 86 |
84 85
|
sylibrd |
|
| 87 |
10 86
|
impbid2 |
|