Step |
Hyp |
Ref |
Expression |
1 |
|
issubg4.b |
|
2 |
|
issubg4.p |
|
3 |
1
|
subgss |
|
4 |
|
eqid |
|
5 |
4
|
subg0cl |
|
6 |
5
|
ne0d |
|
7 |
2
|
subgsubcl |
|
8 |
7
|
3expb |
|
9 |
8
|
ralrimivva |
|
10 |
3 6 9
|
3jca |
|
11 |
|
simplrl |
|
12 |
|
simplrr |
|
13 |
|
oveq1 |
|
14 |
13
|
eleq1d |
|
15 |
14
|
ralbidv |
|
16 |
|
simpr |
|
17 |
|
simprr |
|
18 |
|
r19.2z |
|
19 |
17 18
|
sylan |
|
20 |
|
oveq2 |
|
21 |
20
|
eleq1d |
|
22 |
21
|
rspcv |
|
23 |
22
|
adantl |
|
24 |
|
simprl |
|
25 |
24
|
sselda |
|
26 |
1 4 2
|
grpsubid |
|
27 |
26
|
adantlr |
|
28 |
25 27
|
syldan |
|
29 |
28
|
eleq1d |
|
30 |
23 29
|
sylibd |
|
31 |
30
|
rexlimdva |
|
32 |
31
|
imp |
|
33 |
19 32
|
syldan |
|
34 |
15 16 33
|
rspcdva |
|
35 |
1 4
|
grpidcl |
|
36 |
35
|
ad2antrr |
|
37 |
24
|
sselda |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
1 38 39 2
|
grpsubval |
|
41 |
36 37 40
|
syl2anc |
|
42 |
|
simpll |
|
43 |
1 39
|
grpinvcl |
|
44 |
42 37 43
|
syl2anc |
|
45 |
1 38 4
|
grplid |
|
46 |
42 44 45
|
syl2anc |
|
47 |
41 46
|
eqtrd |
|
48 |
47
|
eleq1d |
|
49 |
48
|
ralbidva |
|
50 |
49
|
adantr |
|
51 |
34 50
|
mpbid |
|
52 |
|
fveq2 |
|
53 |
52
|
eleq1d |
|
54 |
53
|
rspccva |
|
55 |
54
|
ad2ant2l |
|
56 |
|
oveq2 |
|
57 |
56
|
eleq1d |
|
58 |
57
|
rspcv |
|
59 |
55 58
|
syl |
|
60 |
|
simplll |
|
61 |
|
simplrl |
|
62 |
61
|
adantr |
|
63 |
|
simprl |
|
64 |
62 63
|
sseldd |
|
65 |
|
simprr |
|
66 |
62 65
|
sseldd |
|
67 |
1 38 2 39 60 64 66
|
grpsubinv |
|
68 |
67
|
eleq1d |
|
69 |
59 68
|
sylibd |
|
70 |
69
|
anassrs |
|
71 |
70
|
ralrimdva |
|
72 |
71
|
ralimdva |
|
73 |
72
|
impancom |
|
74 |
51 73
|
mpd |
|
75 |
|
oveq1 |
|
76 |
75
|
eleq1d |
|
77 |
76
|
ralbidv |
|
78 |
77
|
cbvralvw |
|
79 |
74 78
|
sylib |
|
80 |
|
r19.26 |
|
81 |
79 51 80
|
sylanbrc |
|
82 |
11 12 81
|
3jca |
|
83 |
82
|
exp42 |
|
84 |
83
|
3impd |
|
85 |
1 38 39
|
issubg2 |
|
86 |
84 85
|
sylibrd |
|
87 |
10 86
|
impbid2 |
|