Metamath Proof Explorer


Theorem issubgoilem

Description: Lemma for hhssabloilem . (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypothesis issubgoilem.1 x Y y Y x H y = x G y
Assertion issubgoilem A Y B Y A H B = A G B

Proof

Step Hyp Ref Expression
1 issubgoilem.1 x Y y Y x H y = x G y
2 oveq1 x = A x H y = A H y
3 oveq1 x = A x G y = A G y
4 2 3 eqeq12d x = A x H y = x G y A H y = A G y
5 oveq2 y = B A H y = A H B
6 oveq2 y = B A G y = A G B
7 5 6 eqeq12d y = B A H y = A G y A H B = A G B
8 4 7 1 vtocl2ga A Y B Y A H B = A G B