Metamath Proof Explorer


Theorem issubgr

Description: The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020)

Ref Expression
Hypotheses issubgr.v V = Vtx S
issubgr.a A = Vtx G
issubgr.i I = iEdg S
issubgr.b B = iEdg G
issubgr.e E = Edg S
Assertion issubgr G W S U S SubGraph G V A I = B dom I E 𝒫 V

Proof

Step Hyp Ref Expression
1 issubgr.v V = Vtx S
2 issubgr.a A = Vtx G
3 issubgr.i I = iEdg S
4 issubgr.b B = iEdg G
5 issubgr.e E = Edg S
6 fveq2 s = S Vtx s = Vtx S
7 6 adantr s = S g = G Vtx s = Vtx S
8 fveq2 g = G Vtx g = Vtx G
9 8 adantl s = S g = G Vtx g = Vtx G
10 7 9 sseq12d s = S g = G Vtx s Vtx g Vtx S Vtx G
11 fveq2 s = S iEdg s = iEdg S
12 11 adantr s = S g = G iEdg s = iEdg S
13 fveq2 g = G iEdg g = iEdg G
14 13 adantl s = S g = G iEdg g = iEdg G
15 11 dmeqd s = S dom iEdg s = dom iEdg S
16 15 adantr s = S g = G dom iEdg s = dom iEdg S
17 14 16 reseq12d s = S g = G iEdg g dom iEdg s = iEdg G dom iEdg S
18 12 17 eqeq12d s = S g = G iEdg s = iEdg g dom iEdg s iEdg S = iEdg G dom iEdg S
19 fveq2 s = S Edg s = Edg S
20 6 pweqd s = S 𝒫 Vtx s = 𝒫 Vtx S
21 19 20 sseq12d s = S Edg s 𝒫 Vtx s Edg S 𝒫 Vtx S
22 21 adantr s = S g = G Edg s 𝒫 Vtx s Edg S 𝒫 Vtx S
23 10 18 22 3anbi123d s = S g = G Vtx s Vtx g iEdg s = iEdg g dom iEdg s Edg s 𝒫 Vtx s Vtx S Vtx G iEdg S = iEdg G dom iEdg S Edg S 𝒫 Vtx S
24 df-subgr SubGraph = s g | Vtx s Vtx g iEdg s = iEdg g dom iEdg s Edg s 𝒫 Vtx s
25 23 24 brabga S U G W S SubGraph G Vtx S Vtx G iEdg S = iEdg G dom iEdg S Edg S 𝒫 Vtx S
26 25 ancoms G W S U S SubGraph G Vtx S Vtx G iEdg S = iEdg G dom iEdg S Edg S 𝒫 Vtx S
27 1 2 sseq12i V A Vtx S Vtx G
28 3 dmeqi dom I = dom iEdg S
29 4 28 reseq12i B dom I = iEdg G dom iEdg S
30 3 29 eqeq12i I = B dom I iEdg S = iEdg G dom iEdg S
31 1 pweqi 𝒫 V = 𝒫 Vtx S
32 5 31 sseq12i E 𝒫 V Edg S 𝒫 Vtx S
33 27 30 32 3anbi123i V A I = B dom I E 𝒫 V Vtx S Vtx G iEdg S = iEdg G dom iEdg S Edg S 𝒫 Vtx S
34 26 33 bitr4di G W S U S SubGraph G V A I = B dom I E 𝒫 V