Metamath Proof Explorer


Theorem issubm2

Description: Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypotheses issubm2.b B = Base M
issubm2.z 0 ˙ = 0 M
issubm2.h H = M 𝑠 S
Assertion issubm2 M Mnd S SubMnd M S B 0 ˙ S H Mnd

Proof

Step Hyp Ref Expression
1 issubm2.b B = Base M
2 issubm2.z 0 ˙ = 0 M
3 issubm2.h H = M 𝑠 S
4 eqid + M = + M
5 1 2 4 issubm M Mnd S SubMnd M S B 0 ˙ S x S y S x + M y S
6 1 4 2 3 issubmnd M Mnd S B 0 ˙ S H Mnd x S y S x + M y S
7 6 bicomd M Mnd S B 0 ˙ S x S y S x + M y S H Mnd
8 7 3expb M Mnd S B 0 ˙ S x S y S x + M y S H Mnd
9 8 pm5.32da M Mnd S B 0 ˙ S x S y S x + M y S S B 0 ˙ S H Mnd
10 df-3an S B 0 ˙ S x S y S x + M y S S B 0 ˙ S x S y S x + M y S
11 df-3an S B 0 ˙ S H Mnd S B 0 ˙ S H Mnd
12 9 10 11 3bitr4g M Mnd S B 0 ˙ S x S y S x + M y S S B 0 ˙ S H Mnd
13 5 12 bitrd M Mnd S SubMnd M S B 0 ˙ S H Mnd