| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubmnd.b |  | 
						
							| 2 |  | issubmnd.p |  | 
						
							| 3 |  | issubmnd.z |  | 
						
							| 4 |  | issubmnd.h |  | 
						
							| 5 |  | simplr |  | 
						
							| 6 |  | simprl |  | 
						
							| 7 |  | simpll2 |  | 
						
							| 8 | 4 1 | ressbas2 |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 | 6 9 | eleqtrd |  | 
						
							| 11 |  | simprr |  | 
						
							| 12 | 11 9 | eleqtrd |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 13 14 | mndcl |  | 
						
							| 16 | 5 10 12 15 | syl3anc |  | 
						
							| 17 | 1 | fvexi |  | 
						
							| 18 | 17 | ssex |  | 
						
							| 19 | 18 | 3ad2ant2 |  | 
						
							| 20 | 4 2 | ressplusg |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 | 21 | ad2antrr |  | 
						
							| 23 | 22 | oveqd |  | 
						
							| 24 | 16 23 9 | 3eltr4d |  | 
						
							| 25 | 24 | ralrimivva |  | 
						
							| 26 |  | simpl2 |  | 
						
							| 27 | 26 8 | syl |  | 
						
							| 28 | 21 | adantr |  | 
						
							| 29 |  | ovrspc2v |  | 
						
							| 30 | 29 | ancoms |  | 
						
							| 31 | 30 | 3impb |  | 
						
							| 32 | 31 | 3adant1l |  | 
						
							| 33 |  | simpl1 |  | 
						
							| 34 | 26 | sseld |  | 
						
							| 35 | 26 | sseld |  | 
						
							| 36 | 26 | sseld |  | 
						
							| 37 | 34 35 36 | 3anim123d |  | 
						
							| 38 | 37 | imp |  | 
						
							| 39 | 1 2 | mndass |  | 
						
							| 40 | 33 38 39 | syl2an2r |  | 
						
							| 41 |  | simpl3 |  | 
						
							| 42 | 26 | sselda |  | 
						
							| 43 | 1 2 3 | mndlid |  | 
						
							| 44 | 33 42 43 | syl2an2r |  | 
						
							| 45 | 1 2 3 | mndrid |  | 
						
							| 46 | 33 42 45 | syl2an2r |  | 
						
							| 47 | 27 28 32 40 41 44 46 | ismndd |  | 
						
							| 48 | 25 47 | impbida |  |