Metamath Proof Explorer


Theorem issubrg

Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014) (Proof shortened by AV, 12-Oct-2020)

Ref Expression
Hypotheses issubrg.b B = Base R
issubrg.i 1 ˙ = 1 R
Assertion issubrg A SubRing R R Ring R 𝑠 A Ring A B 1 ˙ A

Proof

Step Hyp Ref Expression
1 issubrg.b B = Base R
2 issubrg.i 1 ˙ = 1 R
3 df-subrg SubRing = r Ring s 𝒫 Base r | r 𝑠 s Ring 1 r s
4 3 mptrcl A SubRing R R Ring
5 simpll R Ring R 𝑠 A Ring A B 1 ˙ A R Ring
6 fveq2 r = R Base r = Base R
7 6 1 eqtr4di r = R Base r = B
8 7 pweqd r = R 𝒫 Base r = 𝒫 B
9 oveq1 r = R r 𝑠 s = R 𝑠 s
10 9 eleq1d r = R r 𝑠 s Ring R 𝑠 s Ring
11 fveq2 r = R 1 r = 1 R
12 11 2 eqtr4di r = R 1 r = 1 ˙
13 12 eleq1d r = R 1 r s 1 ˙ s
14 10 13 anbi12d r = R r 𝑠 s Ring 1 r s R 𝑠 s Ring 1 ˙ s
15 8 14 rabeqbidv r = R s 𝒫 Base r | r 𝑠 s Ring 1 r s = s 𝒫 B | R 𝑠 s Ring 1 ˙ s
16 1 fvexi B V
17 16 pwex 𝒫 B V
18 17 rabex s 𝒫 B | R 𝑠 s Ring 1 ˙ s V
19 15 3 18 fvmpt R Ring SubRing R = s 𝒫 B | R 𝑠 s Ring 1 ˙ s
20 19 eleq2d R Ring A SubRing R A s 𝒫 B | R 𝑠 s Ring 1 ˙ s
21 oveq2 s = A R 𝑠 s = R 𝑠 A
22 21 eleq1d s = A R 𝑠 s Ring R 𝑠 A Ring
23 eleq2 s = A 1 ˙ s 1 ˙ A
24 22 23 anbi12d s = A R 𝑠 s Ring 1 ˙ s R 𝑠 A Ring 1 ˙ A
25 24 elrab A s 𝒫 B | R 𝑠 s Ring 1 ˙ s A 𝒫 B R 𝑠 A Ring 1 ˙ A
26 16 elpw2 A 𝒫 B A B
27 26 anbi1i A 𝒫 B R 𝑠 A Ring 1 ˙ A A B R 𝑠 A Ring 1 ˙ A
28 an12 A B R 𝑠 A Ring 1 ˙ A R 𝑠 A Ring A B 1 ˙ A
29 25 27 28 3bitri A s 𝒫 B | R 𝑠 s Ring 1 ˙ s R 𝑠 A Ring A B 1 ˙ A
30 ibar R Ring R 𝑠 A Ring R Ring R 𝑠 A Ring
31 30 anbi1d R Ring R 𝑠 A Ring A B 1 ˙ A R Ring R 𝑠 A Ring A B 1 ˙ A
32 29 31 syl5bb R Ring A s 𝒫 B | R 𝑠 s Ring 1 ˙ s R Ring R 𝑠 A Ring A B 1 ˙ A
33 20 32 bitrd R Ring A SubRing R R Ring R 𝑠 A Ring A B 1 ˙ A
34 4 5 33 pm5.21nii A SubRing R R Ring R 𝑠 A Ring A B 1 ˙ A