Step |
Hyp |
Ref |
Expression |
1 |
|
issubrg2.b |
|
2 |
|
issubrg2.o |
|
3 |
|
issubrg2.t |
|
4 |
|
subrgsubg |
|
5 |
2
|
subrg1cl |
|
6 |
3
|
subrgmcl |
|
7 |
6
|
3expb |
|
8 |
7
|
ralrimivva |
|
9 |
4 5 8
|
3jca |
|
10 |
|
simpl |
|
11 |
|
simpr1 |
|
12 |
|
eqid |
|
13 |
12
|
subgbas |
|
14 |
11 13
|
syl |
|
15 |
|
eqid |
|
16 |
12 15
|
ressplusg |
|
17 |
11 16
|
syl |
|
18 |
12 3
|
ressmulr |
|
19 |
11 18
|
syl |
|
20 |
12
|
subggrp |
|
21 |
11 20
|
syl |
|
22 |
|
simpr3 |
|
23 |
|
oveq1 |
|
24 |
23
|
eleq1d |
|
25 |
|
oveq2 |
|
26 |
25
|
eleq1d |
|
27 |
24 26
|
rspc2v |
|
28 |
22 27
|
syl5com |
|
29 |
28
|
3impib |
|
30 |
1
|
subgss |
|
31 |
11 30
|
syl |
|
32 |
31
|
sseld |
|
33 |
31
|
sseld |
|
34 |
31
|
sseld |
|
35 |
32 33 34
|
3anim123d |
|
36 |
35
|
imp |
|
37 |
1 3
|
ringass |
|
38 |
37
|
adantlr |
|
39 |
36 38
|
syldan |
|
40 |
1 15 3
|
ringdi |
|
41 |
40
|
adantlr |
|
42 |
36 41
|
syldan |
|
43 |
1 15 3
|
ringdir |
|
44 |
43
|
adantlr |
|
45 |
36 44
|
syldan |
|
46 |
|
simpr2 |
|
47 |
32
|
imp |
|
48 |
1 3 2
|
ringlidm |
|
49 |
48
|
adantlr |
|
50 |
47 49
|
syldan |
|
51 |
1 3 2
|
ringridm |
|
52 |
51
|
adantlr |
|
53 |
47 52
|
syldan |
|
54 |
14 17 19 21 29 39 42 45 46 50 53
|
isringd |
|
55 |
31 46
|
jca |
|
56 |
1 2
|
issubrg |
|
57 |
10 54 55 56
|
syl21anbrc |
|
58 |
57
|
ex |
|
59 |
9 58
|
impbid2 |
|