Metamath Proof Explorer


Theorem issubrng2

Description: Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypotheses issubrng2.b B = Base R
issubrng2.t · ˙ = R
Assertion issubrng2 R Rng A SubRng R A SubGrp R x A y A x · ˙ y A

Proof

Step Hyp Ref Expression
1 issubrng2.b B = Base R
2 issubrng2.t · ˙ = R
3 subrngsubg A SubRng R A SubGrp R
4 2 subrngmcl A SubRng R x A y A x · ˙ y A
5 4 3expb A SubRng R x A y A x · ˙ y A
6 5 ralrimivva A SubRng R x A y A x · ˙ y A
7 3 6 jca A SubRng R A SubGrp R x A y A x · ˙ y A
8 simpl R Rng A SubGrp R x A y A x · ˙ y A R Rng
9 simprl R Rng A SubGrp R x A y A x · ˙ y A A SubGrp R
10 eqid R 𝑠 A = R 𝑠 A
11 10 subgbas A SubGrp R A = Base R 𝑠 A
12 9 11 syl R Rng A SubGrp R x A y A x · ˙ y A A = Base R 𝑠 A
13 eqid + R = + R
14 10 13 ressplusg A SubGrp R + R = + R 𝑠 A
15 9 14 syl R Rng A SubGrp R x A y A x · ˙ y A + R = + R 𝑠 A
16 10 2 ressmulr A SubGrp R · ˙ = R 𝑠 A
17 9 16 syl R Rng A SubGrp R x A y A x · ˙ y A · ˙ = R 𝑠 A
18 rngabl R Rng R Abel
19 10 subgabl R Abel A SubGrp R R 𝑠 A Abel
20 18 9 19 syl2an2r R Rng A SubGrp R x A y A x · ˙ y A R 𝑠 A Abel
21 simprr R Rng A SubGrp R x A y A x · ˙ y A x A y A x · ˙ y A
22 oveq1 x = u x · ˙ y = u · ˙ y
23 22 eleq1d x = u x · ˙ y A u · ˙ y A
24 oveq2 y = v u · ˙ y = u · ˙ v
25 24 eleq1d y = v u · ˙ y A u · ˙ v A
26 23 25 rspc2v u A v A x A y A x · ˙ y A u · ˙ v A
27 21 26 syl5com R Rng A SubGrp R x A y A x · ˙ y A u A v A u · ˙ v A
28 27 3impib R Rng A SubGrp R x A y A x · ˙ y A u A v A u · ˙ v A
29 1 subgss A SubGrp R A B
30 9 29 syl R Rng A SubGrp R x A y A x · ˙ y A A B
31 30 sseld R Rng A SubGrp R x A y A x · ˙ y A u A u B
32 30 sseld R Rng A SubGrp R x A y A x · ˙ y A v A v B
33 30 sseld R Rng A SubGrp R x A y A x · ˙ y A w A w B
34 31 32 33 3anim123d R Rng A SubGrp R x A y A x · ˙ y A u A v A w A u B v B w B
35 34 imp R Rng A SubGrp R x A y A x · ˙ y A u A v A w A u B v B w B
36 1 2 rngass R Rng u B v B w B u · ˙ v · ˙ w = u · ˙ v · ˙ w
37 36 adantlr R Rng A SubGrp R x A y A x · ˙ y A u B v B w B u · ˙ v · ˙ w = u · ˙ v · ˙ w
38 35 37 syldan R Rng A SubGrp R x A y A x · ˙ y A u A v A w A u · ˙ v · ˙ w = u · ˙ v · ˙ w
39 1 13 2 rngdi R Rng u B v B w B u · ˙ v + R w = u · ˙ v + R u · ˙ w
40 39 adantlr R Rng A SubGrp R x A y A x · ˙ y A u B v B w B u · ˙ v + R w = u · ˙ v + R u · ˙ w
41 35 40 syldan R Rng A SubGrp R x A y A x · ˙ y A u A v A w A u · ˙ v + R w = u · ˙ v + R u · ˙ w
42 1 13 2 rngdir R Rng u B v B w B u + R v · ˙ w = u · ˙ w + R v · ˙ w
43 42 adantlr R Rng A SubGrp R x A y A x · ˙ y A u B v B w B u + R v · ˙ w = u · ˙ w + R v · ˙ w
44 35 43 syldan R Rng A SubGrp R x A y A x · ˙ y A u A v A w A u + R v · ˙ w = u · ˙ w + R v · ˙ w
45 12 15 17 20 28 38 41 44 isrngd R Rng A SubGrp R x A y A x · ˙ y A R 𝑠 A Rng
46 1 issubrng A SubRng R R Rng R 𝑠 A Rng A B
47 8 45 30 46 syl3anbrc R Rng A SubGrp R x A y A x · ˙ y A A SubRng R
48 47 ex R Rng A SubGrp R x A y A x · ˙ y A A SubRng R
49 7 48 impbid2 R Rng A SubRng R A SubGrp R x A y A x · ˙ y A