| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubrng2.b |  | 
						
							| 2 |  | issubrng2.t |  | 
						
							| 3 |  | subrngsubg |  | 
						
							| 4 | 2 | subrngmcl |  | 
						
							| 5 | 4 | 3expb |  | 
						
							| 6 | 5 | ralrimivva |  | 
						
							| 7 | 3 6 | jca |  | 
						
							| 8 |  | simpl |  | 
						
							| 9 |  | simprl |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 10 | subgbas |  | 
						
							| 12 | 9 11 | syl |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 10 13 | ressplusg |  | 
						
							| 15 | 9 14 | syl |  | 
						
							| 16 | 10 2 | ressmulr |  | 
						
							| 17 | 9 16 | syl |  | 
						
							| 18 |  | rngabl |  | 
						
							| 19 | 10 | subgabl |  | 
						
							| 20 | 18 9 19 | syl2an2r |  | 
						
							| 21 |  | simprr |  | 
						
							| 22 |  | oveq1 |  | 
						
							| 23 | 22 | eleq1d |  | 
						
							| 24 |  | oveq2 |  | 
						
							| 25 | 24 | eleq1d |  | 
						
							| 26 | 23 25 | rspc2v |  | 
						
							| 27 | 21 26 | syl5com |  | 
						
							| 28 | 27 | 3impib |  | 
						
							| 29 | 1 | subgss |  | 
						
							| 30 | 9 29 | syl |  | 
						
							| 31 | 30 | sseld |  | 
						
							| 32 | 30 | sseld |  | 
						
							| 33 | 30 | sseld |  | 
						
							| 34 | 31 32 33 | 3anim123d |  | 
						
							| 35 | 34 | imp |  | 
						
							| 36 | 1 2 | rngass |  | 
						
							| 37 | 36 | adantlr |  | 
						
							| 38 | 35 37 | syldan |  | 
						
							| 39 | 1 13 2 | rngdi |  | 
						
							| 40 | 39 | adantlr |  | 
						
							| 41 | 35 40 | syldan |  | 
						
							| 42 | 1 13 2 | rngdir |  | 
						
							| 43 | 42 | adantlr |  | 
						
							| 44 | 35 43 | syldan |  | 
						
							| 45 | 12 15 17 20 28 38 41 44 | isrngd |  | 
						
							| 46 | 1 | issubrng |  | 
						
							| 47 | 8 45 30 46 | syl3anbrc |  | 
						
							| 48 | 47 | ex |  | 
						
							| 49 | 7 48 | impbid2 |  |