Metamath Proof Explorer


Theorem issubrngd2

Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014)

Ref Expression
Hypotheses issubrngd.s φ S = I 𝑠 D
issubrngd.z φ 0 ˙ = 0 I
issubrngd.p φ + ˙ = + I
issubrngd.ss φ D Base I
issubrngd.zcl φ 0 ˙ D
issubrngd.acl φ x D y D x + ˙ y D
issubrngd.ncl φ x D inv g I x D
issubrngd.o φ 1 ˙ = 1 I
issubrngd.t φ · ˙ = I
issubrngd.ocl φ 1 ˙ D
issubrngd.tcl φ x D y D x · ˙ y D
issubrngd.g φ I Ring
Assertion issubrngd2 φ D SubRing I

Proof

Step Hyp Ref Expression
1 issubrngd.s φ S = I 𝑠 D
2 issubrngd.z φ 0 ˙ = 0 I
3 issubrngd.p φ + ˙ = + I
4 issubrngd.ss φ D Base I
5 issubrngd.zcl φ 0 ˙ D
6 issubrngd.acl φ x D y D x + ˙ y D
7 issubrngd.ncl φ x D inv g I x D
8 issubrngd.o φ 1 ˙ = 1 I
9 issubrngd.t φ · ˙ = I
10 issubrngd.ocl φ 1 ˙ D
11 issubrngd.tcl φ x D y D x · ˙ y D
12 issubrngd.g φ I Ring
13 ringgrp I Ring I Grp
14 12 13 syl φ I Grp
15 1 2 3 4 5 6 7 14 issubgrpd2 φ D SubGrp I
16 8 10 eqeltrrd φ 1 I D
17 9 oveqdr φ x D y D x · ˙ y = x I y
18 11 3expb φ x D y D x · ˙ y D
19 17 18 eqeltrrd φ x D y D x I y D
20 19 ralrimivva φ x D y D x I y D
21 eqid Base I = Base I
22 eqid 1 I = 1 I
23 eqid I = I
24 21 22 23 issubrg2 I Ring D SubRing I D SubGrp I 1 I D x D y D x I y D
25 12 24 syl φ D SubRing I D SubGrp I 1 I D x D y D x I y D
26 15 16 20 25 mpbir3and φ D SubRing I