Metamath Proof Explorer


Theorem ist0-4

Description: The topological indistinguishability map is injective iff the space is T_0. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F=xXyJ|xy
Assertion ist0-4 JTopOnXJKol2F:X1-1V

Proof

Step Hyp Ref Expression
1 kqval.2 F=xXyJ|xy
2 1 kqfeq JTopOnXzXwXFz=FwyJzywy
3 2 3expb JTopOnXzXwXFz=FwyJzywy
4 3 imbi1d JTopOnXzXwXFz=Fwz=wyJzywyz=w
5 4 2ralbidva JTopOnXzXwXFz=Fwz=wzXwXyJzywyz=w
6 1 kqffn JTopOnXFFnX
7 dffn2 FFnXF:XV
8 6 7 sylib JTopOnXF:XV
9 dff13 F:X1-1VF:XVzXwXFz=Fwz=w
10 9 baib F:XVF:X1-1VzXwXFz=Fwz=w
11 8 10 syl JTopOnXF:X1-1VzXwXFz=Fwz=w
12 ist0-2 JTopOnXJKol2zXwXyJzywyz=w
13 5 11 12 3bitr4rd JTopOnXJKol2F:X1-1V