Database
BASIC TOPOLOGY
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
ist1
Next ⟩
ishaus
Metamath Proof Explorer
Ascii
Unicode
Theorem
ist1
Description:
The predicate "is a T_1 space".
(Contributed by
FL
, 18-Jun-2007)
Ref
Expression
Hypothesis
ist0.1
⊢
X
=
⋃
J
Assertion
ist1
⊢
J
∈
Fre
↔
J
∈
Top
∧
∀
a
∈
X
a
∈
Clsd
⁡
J
Proof
Step
Hyp
Ref
Expression
1
ist0.1
⊢
X
=
⋃
J
2
unieq
⊢
x
=
J
→
⋃
x
=
⋃
J
3
2
1
eqtr4di
⊢
x
=
J
→
⋃
x
=
X
4
fveq2
⊢
x
=
J
→
Clsd
⁡
x
=
Clsd
⁡
J
5
4
eleq2d
⊢
x
=
J
→
a
∈
Clsd
⁡
x
↔
a
∈
Clsd
⁡
J
6
3
5
raleqbidv
⊢
x
=
J
→
∀
a
∈
⋃
x
a
∈
Clsd
⁡
x
↔
∀
a
∈
X
a
∈
Clsd
⁡
J
7
df-t1
⊢
Fre
=
x
∈
Top
|
∀
a
∈
⋃
x
a
∈
Clsd
⁡
x
8
6
7
elrab2
⊢
J
∈
Fre
↔
J
∈
Top
∧
∀
a
∈
X
a
∈
Clsd
⁡
J