Step |
Hyp |
Ref |
Expression |
1 |
|
topontop |
|
2 |
|
eqid |
|
3 |
2
|
ist1 |
|
4 |
3
|
baib |
|
5 |
1 4
|
syl |
|
6 |
|
toponuni |
|
7 |
6
|
raleqdv |
|
8 |
1
|
adantr |
|
9 |
|
eltop2 |
|
10 |
8 9
|
syl |
|
11 |
6
|
eleq2d |
|
12 |
11
|
biimpa |
|
13 |
12
|
snssd |
|
14 |
2
|
iscld2 |
|
15 |
8 13 14
|
syl2anc |
|
16 |
6
|
adantr |
|
17 |
16
|
eleq2d |
|
18 |
17
|
imbi1d |
|
19 |
|
con1b |
|
20 |
|
df-ne |
|
21 |
20
|
imbi1i |
|
22 |
|
disjsn |
|
23 |
|
elssuni |
|
24 |
|
reldisj |
|
25 |
23 24
|
syl |
|
26 |
22 25
|
bitr3id |
|
27 |
26
|
anbi2d |
|
28 |
27
|
rexbiia |
|
29 |
|
rexanali |
|
30 |
28 29
|
bitr3i |
|
31 |
30
|
con2bii |
|
32 |
31
|
imbi1i |
|
33 |
19 21 32
|
3bitr4ri |
|
34 |
33
|
imbi2i |
|
35 |
|
eldifsn |
|
36 |
35
|
imbi1i |
|
37 |
|
impexp |
|
38 |
36 37
|
bitri |
|
39 |
18 34 38
|
3bitr4g |
|
40 |
39
|
ralbidv2 |
|
41 |
10 15 40
|
3bitr4d |
|
42 |
41
|
ralbidva |
|
43 |
|
ralcom |
|
44 |
42 43
|
bitrdi |
|
45 |
5 7 44
|
3bitr2d |
|