Metamath Proof Explorer


Theorem istdrg

Description: Express the predicate " R is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses istrg.1 M = mulGrp R
istdrg.1 U = Unit R
Assertion istdrg R TopDRing R TopRing R DivRing M 𝑠 U TopGrp

Proof

Step Hyp Ref Expression
1 istrg.1 M = mulGrp R
2 istdrg.1 U = Unit R
3 elin R TopRing DivRing R TopRing R DivRing
4 3 anbi1i R TopRing DivRing M 𝑠 U TopGrp R TopRing R DivRing M 𝑠 U TopGrp
5 fveq2 r = R mulGrp r = mulGrp R
6 5 1 eqtr4di r = R mulGrp r = M
7 fveq2 r = R Unit r = Unit R
8 7 2 eqtr4di r = R Unit r = U
9 6 8 oveq12d r = R mulGrp r 𝑠 Unit r = M 𝑠 U
10 9 eleq1d r = R mulGrp r 𝑠 Unit r TopGrp M 𝑠 U TopGrp
11 df-tdrg TopDRing = r TopRing DivRing | mulGrp r 𝑠 Unit r TopGrp
12 10 11 elrab2 R TopDRing R TopRing DivRing M 𝑠 U TopGrp
13 df-3an R TopRing R DivRing M 𝑠 U TopGrp R TopRing R DivRing M 𝑠 U TopGrp
14 4 12 13 3bitr4i R TopDRing R TopRing R DivRing M 𝑠 U TopGrp