Metamath Proof Explorer


Theorem istdrg2

Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses istdrg2.m M = mulGrp R
istdrg2.b B = Base R
istdrg2.z 0 ˙ = 0 R
Assertion istdrg2 R TopDRing R TopRing R DivRing M 𝑠 B 0 ˙ TopGrp

Proof

Step Hyp Ref Expression
1 istdrg2.m M = mulGrp R
2 istdrg2.b B = Base R
3 istdrg2.z 0 ˙ = 0 R
4 eqid Unit R = Unit R
5 1 4 istdrg R TopDRing R TopRing R DivRing M 𝑠 Unit R TopGrp
6 2 4 3 isdrng R DivRing R Ring Unit R = B 0 ˙
7 6 simprbi R DivRing Unit R = B 0 ˙
8 7 adantl R TopRing R DivRing Unit R = B 0 ˙
9 8 oveq2d R TopRing R DivRing M 𝑠 Unit R = M 𝑠 B 0 ˙
10 9 eleq1d R TopRing R DivRing M 𝑠 Unit R TopGrp M 𝑠 B 0 ˙ TopGrp
11 10 pm5.32i R TopRing R DivRing M 𝑠 Unit R TopGrp R TopRing R DivRing M 𝑠 B 0 ˙ TopGrp
12 df-3an R TopRing R DivRing M 𝑠 Unit R TopGrp R TopRing R DivRing M 𝑠 Unit R TopGrp
13 df-3an R TopRing R DivRing M 𝑠 B 0 ˙ TopGrp R TopRing R DivRing M 𝑠 B 0 ˙ TopGrp
14 11 12 13 3bitr4i R TopRing R DivRing M 𝑠 Unit R TopGrp R TopRing R DivRing M 𝑠 B 0 ˙ TopGrp
15 5 14 bitri R TopDRing R TopRing R DivRing M 𝑠 B 0 ˙ TopGrp